I ODE Solution Question: Comparing A1(r,ε) and A2(r) with ε=0

  • I
  • Thread starter Thread starter Mentz114
  • Start date Start date
  • Tags Tags
    Ode
Mentz114
Messages
5,429
Reaction score
292
I've been solving these two ODEs

##\frac{d}{d\,r}\,A=F(A,r) + \epsilon f(r)## and ##\frac{d}{d\,r}\,A=F(A,r)##.

If the solutions are respectively ##A_1(r,\epsilon)## and ##A_2(r)## then will ##A_1(r,0) = A_2(r)## ?
I realize the answer could depend on the actual functions but with the ones I'm using it appears that setting ##\epsilon=0## does not recover ##A_2##.

I'd be grateful for any advice on this.
 
Physics news on Phys.org
Weird stuff. In this answer, I assume that your differential equation has a unique solution (which is not always the case)

So for every ##\epsilon##, you have the ODE
$$\frac{d}{dr} A = F(A,r) + \epsilon f(r)$$

with solution ##A_1(r,\epsilon)##. In particular, for ##\epsilon = 0## you get the solution ##A_1(r,0)## which is a solution for ##\frac{d}{dr} A = F(A,r)##, so you should get the same solutions (if they agree at a point and the differential equation behaves nicely enough to get a unique solution).

Maybe post the exact functions/problem so we can see what goes wrong.
 
The question is quite ambiguous, too, because it would seem to suggest that ##F## is an integral function of ##f## but the two don't depend on same variables.
 
The question is old and the OP has not been on PF in a long time. If you want to discuss this please create a new thread. This one is locked.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top