manenbu
- 101
- 0
Homework Statement
y' = \frac{2x+3y-5}{x+4y}
Homework Equations
The Attempt at a Solution
First of all, I switched it to another coordinates, a and b, giving:
b' = \frac{2a+3b}{a+4b}
where a = x-4 and b = y+1.
Then using the substitution z = \frac{b}{a} and some algebra I get:
z' = \frac{2z+2-4z^2}{a(1+4z)}
the integral is:
\frac{1}{2} \int \frac{(1+4z)dz}{2+1-2z^2} = \int \frac{da}{a}
solving the integral (using partial fractions) gives me:
5\ln{|z-1|} + \ln{|z+\frac{1}{2}|} = 6\ln{|a|}+C
getting rid of the logarithm, and putting back a and b inside:
\left(\frac{b-a}{a}\right)^5 \left(\frac{2b+a}{2a}\right)=C(a)^6
making it back in x and y:
\left(\frac{y-x+5}{x-4}\right)^5 \left(\frac{2y+x-2}{2x-8}\right)=C(x-4)^6
Which should be the final answer, but when I look at the answers, it's different, being:
(y-x+5)^5(2y+x-2)=C
And my question is - where did I go wrong?
I had a similar problem where I got similar results, me having denominators which didn't appear in the given answer. Am I doing something wrong in my technique, or both of the answers are equal (and I'm missing some algebra here)?
Thanks!