- #1
li dan
- 18
- 0
As shown in the figure, in the Meisner effect, the magnetic field of the magnet bypasses the superconductor. My question is, does the magnetic B field belonging to the magnet increase at the arrow indicating position?
Or is there no change in the intensity of the magnetic field that belongs to the magnet? Is it just the superposition of the magnetic field of the magnet and the magnetic field of the superconductor?.
Is it also possible to ask, assuming that the energized conductor is placed at the position of the arrow, regardless of the force between the energized conductor and the superconductor, the ampere force between the energized conductor and the magnet is F1. The ampere force between the energized wire and the magnet after removal of the superconductor is F2, can F1 be greater than F2?
Or is there no change in the intensity of the magnetic field that belongs to the magnet? Is it just the superposition of the magnetic field of the magnet and the magnetic field of the superconductor?.
Is it also possible to ask, assuming that the energized conductor is placed at the position of the arrow, regardless of the force between the energized conductor and the superconductor, the ampere force between the energized conductor and the magnet is F1. The ampere force between the energized wire and the magnet after removal of the superconductor is F2, can F1 be greater than F2?

Attachments
Last edited: