motion_ar
- 33
- 0
The principle of least action applicable in an uniform field can be obtained as follows:
Particle A
\vec{a}_A = \vec{a}_A
\int \vec{a}_A \cdot d\vec{r}_A = \int \vec{a}_A \cdot d\vec{r}_A
\int \vec{a}_A \cdot d\vec{r}_A = \Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2
\int \vec{a}_A \cdot d\vec{r}_A = \Delta \; \; \vec{a}_A \cdot \vec{r}_A
\Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2 = \Delta \; \; \vec{a}_A \cdot \vec{r}_A
\Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2 - \Delta \; \; \vec{a}_A \cdot \vec{r}_A = 0
m_A \left( \Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2 - \Delta \; \; \vec{a}_A \cdot \vec{r}_A \right) = 0
Alex
Particle A
\vec{a}_A = \vec{a}_A
\int \vec{a}_A \cdot d\vec{r}_A = \int \vec{a}_A \cdot d\vec{r}_A
\int \vec{a}_A \cdot d\vec{r}_A = \Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2
\int \vec{a}_A \cdot d\vec{r}_A = \Delta \; \; \vec{a}_A \cdot \vec{r}_A
\Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2 = \Delta \; \; \vec{a}_A \cdot \vec{r}_A
\Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2 - \Delta \; \; \vec{a}_A \cdot \vec{r}_A = 0
m_A \left( \Delta \; {\textstyle \frac{1}{2}}\vec{v}_A^2 - \Delta \; \; \vec{a}_A \cdot \vec{r}_A \right) = 0
Alex