One two-variable, and one three-variable limits

  • Thread starter Thread starter libelec
  • Start date Start date
  • Tags Tags
    Limits
libelec
Messages
173
Reaction score
0
1. I need to find these two limits, without using the definition of limit:

a) <br /> \mathop {\lim }\limits_{(x,y) \to (0,2)} \frac{{y^2 (x - 2)^2 }}<br /> {{x^2 (y - 2)^2 }}

b) <br /> \mathop {\lim }\limits_{(x,y,z) \to (0,1,1)} \frac{{y + 1}}<br /> {{\sqrt {z^2 - 1} }}

The Attempt at a Solution



For a) I found that if looking for the limit using curves, in this case using y-2=mx, with m=constant, and y-2=kx^2, with k=constant, are infinite.

For b) I'm clueless.

Any help will be thanked.
 
Physics news on Phys.org
For the second one, note that there is no x-dependency. So you can look at curves in the (y, z)-plane and give them arbitrary x-dependency, i.e. only consider
\lim_{(y, z) \to (1, 1)} \frac{y + 2}{\sqrt{z^2 - 1}}
 
Yes, I was thinking about that, thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top