Open and Closed Models in Cosmology

Anamitra
Messages
620
Reaction score
0
Let us consider the cosmological metric:
{ds}^{2}{=}{dt}^{2}{-}{[}{a}{(}{t}{)}{]}^{2}{[}\frac{{dr}^{2}}{{1}{-}{k}{r}^{2}}{+}{r}^{2}{(}{d}{\theta}^{2}{+}{sin}^{2}{(}{\theta}{)}{d}{\phi}^{2}{]} -------------- (1)
For closed models k is positive
We shall consider here a closed one:
We write:
{ds}^{2}{=}{dt}^{2}{-}{d}{{X}_1}^{2}{-}{d}{{X}_{2}}^{2}{-}{d}{{X}_{3}}^{2} --------------- (2)
Where:
{d}{X}_{1}{=}{\int}\frac{{a}{(}{t}{)}}{\sqrt{{1}{-}{k}{r}^{2}}}{dr}--(3)
{d}{X}_{2}{=}{\int}{a}{(}{t}{)}{r}{d}{\theta}
{d}{X}_{3}{=}{\int}{a}{(}{t}{)}{r}{sin}{\theta}{d}{\phi}

When viewed in terms of physical variables equation (2) is a flat space time metric in terms of physical variables[X1,X2 and X3 are simply lengths] . The Special Relativity features of the light cone should be satisfied.
In a closed model let us consider a light cone at a point infinitesimally close to the boundary which is not expanding at a superluminally wrt the point in consideration.[at the current stage]..Rather the rate of expansion of the boundary is assumed to be quite slow [much less than c]with respect to the point in consideration. What would the forward motion of the light ray be like?
Incidentally it is important to understand closed models in view of certain figures[ apart from other reasons] for example the blue-cone diagram in the wiki picture:
http://en.wikipedia.org/wiki/Metric_expansion_of_space#Understanding_the_expansion_of_Universe
The circumference of the horizontal grid-line is finite at any particular instant of time -this is indicative of a closed model.
 
Last edited:
Physics news on Phys.org
The post has been revised
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Back
Top