Optimization-Arithmetic-Geometric Mean Inequality

  • Thread starter Thread starter kfoisfn
  • Start date Start date
  • Tags Tags
    Inequality Mean
kfoisfn
Messages
1
Reaction score
0

Homework Statement


Use the Arithmetic-Geometric Mean Inequality to minimize 3x+4y+12z to xyz=1 and x,y,z>0.

Homework Equations





The Attempt at a Solution


 
Physics news on Phys.org
What is the "Arithmetic-Geometric Mean Inequality"?

And does "minimize 3x+4y+12z to xyz=1" mean to minimize 3x+ 4y+ 12z with the condition that xyz= 1?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top