Orbital Angular Momentum Origin

widderjoos
Messages
21
Reaction score
0
We know from classical mechanics that angular momentum L = r \times p depends on your choice of origin. My question is: How does this work quantum mechanically? We know we get certain eigenvalues, but does this apply only in a certain choice of origin? How do we calculate angular momentum at some other point? I had a similar problem concerning torque on a magnetic dipole, \tau = \mu \times B = r \times F. About what point do we measure the moment arm?
Do we just assume our origin is at the "center" of the orbit?

Thanks for the help.
 
Physics news on Phys.org
widderjoos said:
We know from classical mechanics that angular momentum L = r \times p depends on your choice of origin. My question is: How does this work quantum mechanically? We know we get certain eigenvalues, but does this apply only in a certain choice of origin? How do we calculate angular momentum at some other point? I had a similar problem concerning torque on a magnetic dipole, \tau = \mu \times B = r \times F. About what point do we measure the moment arm?
Do we just assume our origin is at the "center" of the orbit?

Thanks for the help.

Angular momentum depends on position like in classical mechanics. However, when speaking of L e.g. for an atom, one always refers to the angular momentum of the atom in the rest frame of its center of mass so that L becomes independent of position. In principle it would be more appropriate to talk of a contribution to the spin of the compound particle than of angular momentum.
 
In quantum mechanics, orbital angular momentum usually describes electron orbitals, where orbitals are located in an atom. When we regarding to an atom, I don't think choosing an arbitrary axis, say the tree trunk outside, would mean any thing to solving problems.

Therefore, it has no necessity to specify the axis, since we all know what we are referring to
 
Yeah, that's what I was thinking, but just wanted to make sure since I couldn't find it explicitly stated anywhere. Thanks!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top