Orbital period of satellite about a nonrotating body

AI Thread Summary
A satellite orbits a nonrotating planet at an altitude of 1000 km with an orbital speed of 5.3 km/s, while the escape velocity is 11.3 km/s. The user initially calculated the orbital period but arrived at 25 minutes, which contradicted the answer key's 35 minutes. After reviewing the calculations, it was discovered that a multiplication error was made when solving for R, leading to the incorrect period. Correcting this error provided the accurate value of R, resulting in the correct orbital period of 35 minutes. The discussion highlights the importance of careful algebraic manipulation in orbital mechanics calculations.
mollybethe
Messages
11
Reaction score
0

Homework Statement


A satellite is in circular orbit at an altitude of 1000 km above the surface of a nonrotating planet with n orbital speed of 5.3 km/s. The escape velocity for the planet is 11.3 km/s. In this situation the orbital period of the satellite, in minutes, is...?


Homework Equations


v(orbital)=√(GM/R+r)
v(escape)=√(2GM/R)
T=2∏R/v

The Attempt at a Solution


Of course I converted everything to SI units first. So v(orbital)=5300m/s and v(escape)=11300m/s and r=10^6m. What I did is solved the two equations for velocity for M and then plugged in what I had. I found that R is 282,028m which seems small, but then using that I find that and the second equation I find the time period in minutes to be 25. According to my answer key the answer should be 35. I don't know if I am wrong or the answer key is wrong. What I don't know how to do is allow for any effect that the fact that the planet is non-rotating may have. Help...am I making a silly mistake? It is after midnight and I have been at this a while.
 
Physics news on Phys.org
Your value for R is not correct. Assuming that you mean GM/(R+r) in the first equation, your equations are correct and I guess something must have slipped solving those equations for R. (Hint: one way is to find GM from the second equation and insert this into the first equation and solve for R).
 
I got it! I left out a times two...I was trying to be smooth with my algebra to make my calculations easier and left out a x 2. I got it. R=784624 so R+r=1.78562x10^6. Using the third equation that gives me 35 minutes. Thank you, at least I knew I was working it out correctly!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top