Finite Group G-set Stabiliser and Orbit: Orbits and Stabilisers Homework

  • Thread starter Thread starter Ted123
  • Start date Start date
  • Tags Tags
    Orbits
Ted123
Messages
428
Reaction score
0

Homework Statement



For the finite group G and G-set X below, find the stabiliser \text{stab}_G(x) of the given element x \in X and describe the G-orbit of x.

http://img36.imageshack.us/img36/1962/grouplg.jpg

Homework Equations



The stabiliser of x is defined: \text{stab}_G (x) = \{ g\in G : gx=x \}

The Attempt at a Solution



I get: \text{orb}_G \left ( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right ) = \left \{ g \begin{bmatrix} 1 \\ 0 \end{bmatrix} : g\in G \right \} = \left \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} , \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} , \begin{bmatrix} -1 \\ 0 \end{bmatrix} , \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} , \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} \right \}

But when the question says 'describe the G-orbit of x' does this mean 'find \text{orb}_G (x)' or what?
 
Last edited by a moderator:
Physics news on Phys.org
Ted123 said:
But when the question says 'describe the G-orbit of x' does this mean 'find \text{orb}_G (x)' or what?
Yes. Your answer looks fine to me. The question also asks for the stabilizer of x. Did you answer that part? (I assume the answer is pretty obvious.)
 
jbunniii said:
Yes. Your answer looks fine to me. The question also asks for the stabilizer of x. Did you answer that part? (I assume the answer is pretty obvious.)

OK good. I think the stabiliser is just \text{stab}_G (x) = \left \{ <br /> \begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \end{bmatrix} \right \}
 
Ted123 said:
OK good. I think the stabiliser is just \text{stab}_G (x) = \left \{ <br /> \begin{bmatrix} 1 &amp; 0 \\ 0 &amp; 1 \end{bmatrix} \right \}

Yep.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top