Order of Homomorphisms from Z to Z/2Z - Help Needed

  • Thread starter Thread starter jakelyon
  • Start date Start date
jakelyon
Messages
7
Reaction score
0
I have seen that there exists two group homomorphisms from Z to Z/2Z. However, I cannot seem to understand this. I mean I know that there exists a trivial grp hom. which sends all of Z to 0 in Z/2Z. But I cannot think of anymore. Any help?
 
Physics news on Phys.org
Well, Z is generated by 1. There are two places 1 can map to, 0 or 1 (mod 2). If it doesn't map to 0, it must map to 1. Do you see what function that really is?
 
You mean that I map all even to 0 and all odd to 1?
 
Yes :)
If f(1)=1 (mod 2), then f(n)=n (mod 2), which is 0 if n is even and 1 if n is odd.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top