leastaction
- 5
- 0
Hi there!
In thermal field theory, the Matsubara frequencies are defined by \nu_n = \frac{2n\pi}{\beta} for bosons and \omega_n = \frac{(2n+1)\pi}{\beta} for fermions. Assuming discrete imaginary time with time indices k=0,\hdots,N, it is easy to obtain the following orthogonality relation for bosons, just by using the standard formula for the geometric series (\beta is the inverse temperature),
\frac{\beta}{N} \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{i} \frac{\beta}{N} (\nu_n+\nu_m)k} = \begin{cases} \frac{\beta}{N} \sum_{k=0}^{N-1} 1 = \beta & \mathrm{for}\ n=-m \\ \frac{1-\mathrm{e}^{\mathrm{i} \beta (\nu_n+\nu_m)}}{1-\mathrm{e}^{\mathrm{i} \frac{\beta}{N} (\nu_n+\nu_m)}} = 0 & \mathrm{for}\ n\neq -m \end{cases} = \beta\delta_{n,-m}
The second line holds because \beta (\nu_n+\nu_m) is an integer multiple of 2\pi and thus the numerator vanishes. But in the case of fermions, I obtain
\frac{\beta}{N} \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{i} \frac{\beta}{N} (\omega_n+\omega_m)k} = \begin{cases} \frac{\beta}{N} \sum_{k=0}^{N-1} 1 = \beta & \mathrm{for}\ n=-(m+1) \\ \frac{1-\mathrm{e}^{\mathrm{i} \beta (\omega_n+\omega_m)}}{1-\mathrm{e}^{\mathrm{i}\frac{\beta}{N} (\omega_n+\omega_m)}} = 0 & \mathrm{for}\ n \neq -(m+1)} \end{cases} = \beta\delta_{n,-(m+1)}
Is this true? The Kronecker delta with n,-(m+1) looks rather strange!
Thanks for your help!
In thermal field theory, the Matsubara frequencies are defined by \nu_n = \frac{2n\pi}{\beta} for bosons and \omega_n = \frac{(2n+1)\pi}{\beta} for fermions. Assuming discrete imaginary time with time indices k=0,\hdots,N, it is easy to obtain the following orthogonality relation for bosons, just by using the standard formula for the geometric series (\beta is the inverse temperature),
\frac{\beta}{N} \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{i} \frac{\beta}{N} (\nu_n+\nu_m)k} = \begin{cases} \frac{\beta}{N} \sum_{k=0}^{N-1} 1 = \beta & \mathrm{for}\ n=-m \\ \frac{1-\mathrm{e}^{\mathrm{i} \beta (\nu_n+\nu_m)}}{1-\mathrm{e}^{\mathrm{i} \frac{\beta}{N} (\nu_n+\nu_m)}} = 0 & \mathrm{for}\ n\neq -m \end{cases} = \beta\delta_{n,-m}
The second line holds because \beta (\nu_n+\nu_m) is an integer multiple of 2\pi and thus the numerator vanishes. But in the case of fermions, I obtain
\frac{\beta}{N} \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{i} \frac{\beta}{N} (\omega_n+\omega_m)k} = \begin{cases} \frac{\beta}{N} \sum_{k=0}^{N-1} 1 = \beta & \mathrm{for}\ n=-(m+1) \\ \frac{1-\mathrm{e}^{\mathrm{i} \beta (\omega_n+\omega_m)}}{1-\mathrm{e}^{\mathrm{i}\frac{\beta}{N} (\omega_n+\omega_m)}} = 0 & \mathrm{for}\ n \neq -(m+1)} \end{cases} = \beta\delta_{n,-(m+1)}
Is this true? The Kronecker delta with n,-(m+1) looks rather strange!
Thanks for your help!