MHB Orthogonality of stirling numbers

AI Thread Summary
The discussion centers on the orthogonality of Stirling numbers, specifically the identities involving Stirling numbers of the first and second kinds. The initial claim of an identity is corrected, revealing that the correct form involves alternating signs. A detailed proof is provided, utilizing generating functions and properties of Stirling numbers. The conversation also highlights a misunderstanding regarding the signed version of Stirling numbers, which leads to agreement on the identities when properly interpreted. The thread concludes with references to relevant literature for further exploration of the topic.
bkarpuz
Messages
11
Reaction score
0
Dear MHB members,

denote by $s_{n,k}$ and $S_{n,k}$ Stirling numbers of the first-kind and of the second-kind, respectively.
I need to see the proof of the identity $\sum_{j=k}^{n}S(n,j)s(j,k)=\sum_{j=k}^{n}s(n,j)S(j,k)=\delta _{{n,k}}$.
Please let me know if you know a reference in this direction.

Many thanks.
bkarpuz
 
Physics news on Phys.org
As stated, the result is not true, it should be: \[\sum_{j=k}^n (-1)^{n-j} S(n,j) s(j,k) = \sum_{j=k}^n (-1)^{n-j} s(n,j) S(j,k) =\delta_{n,k}\]

First we note that \[\displaystyle\sum_{n\geq 0} S(n,k) \displaystyle\frac{x^n}{n!} = \frac{1}{k!}\cdot\left(\frac{x^1}{1!} + \frac{x^2}{2!}+...\right)^k = \frac{1}{k!}\cdot\left(e^x - 1\right)^k (*)\]

Thus we write \[ A(x) := \displaystyle\sum_{n} \left( \displaystyle\frac{x^n}{n!} \cdot \sum_{j} (-1)^{n-j} S(n,j) s(j,k) \right) = \sum_j \left( \sum_n S(n,j) \cdot \displaystyle\frac{(-x)^n}{n!} \right) \cdot s(j,k) \cdot (-1)^j = \sum_j \frac{\left(1 - e^{-x}\right)^j}{j!} \cdot s(j,k)\]

And on the other hand \[ \sum_{j,k} s(j,k)\cdot \frac{x^j}{j!}\cdot y^k = \exp\left(y\cdot \log\left(\frac{1}{1-x}\right)\right) (**)\]

Thus \[ \sum_j s(j,k) \cdot \frac{x^j}{j!} = \frac{1}{k!}\cdot \log^k\left(\frac{1}{1-x}\right)\]

And \[A(x) = \sum_j \frac{\left(1 - e^{-x}\right)^j}{j!} \cdot s(j,k) = \frac{1}{k!}\cdot \log^k\left(\frac{1}{1-(1 - e^{-x})}\right) = \frac{x^k}{k!} \]

Which indeed implies $\sum_{j=k}^n (-1)^{n-j} S(n,j) s(j,k) =\delta_{n,k}$. $\square$ ( I will leave the other identity to you (Wink) )

For (*), note that the coefficient of $x^n$ in $\frac{1}{k!}\cdot\left(\frac{x^1}{1!} + \frac{x^2}{2!}+...\right)^k $ is actually $ \frac{1}{k!}\cdot \sum_{d_1+...+d_k = n ; d_i > 0} \frac{1}{d_1!\cdot d_2!\cdot ... d_k!} $ , and so if we multiply it by $n!$ we get $ \frac{1}{k!}\cdot \sum_{d_1+...+d_k = n ; d_i > 0} \frac{n!}{d_1!\cdot d_2!\cdot ... d_k!} $ which should ring a bell.

Indeed $\frac{n!}{d_1!\cdot d_2!\cdot ... d_k!}$ is the number of permutations with repetitions, in which you have $n$ elements, $d_1$ of type $1$, etc... so we are actually putting $n$ elements into $k$ (non-empty) boxes. But since what we want are partitions, we don't really care about the renaming of those "boxes", thus the $\frac{1}{k!}$ and $(*)$ is proved.

Now for $(**)$ note that $ \exp\left(y\cdot \log\left(\frac{1}{1-x}\right)\right) = \exp\left(y\cdot \sum_{n\geq 1}{\frac{(n-1)!}{n!}\cdot x^n}\right) = \displaystyle\sum_{k=0}^{\infty}{\frac{1}{k!}\cdot \left(y\cdot \sum_{n\geq 1}{\frac{(n-1)!}{n!}\cdot x^n}\right)^k}$. And here by a similar idea, the coefficient of $x^a y^k$ in $\frac{1}{k!}\cdot \left(y\cdot \sum_{n\geq 1}{\frac{(n-1)!}{n!}\cdot x^n}\right)^k$ corresponds to the number of permutations of $a$ elements into $k$ cycles (remember $(n-1)!$ is the number of cyclic permutations of $n$ elements) , but divided by $a!$.

Some references :
  • Analytic Combinatorics by Flajolet and Sedgewick. Page 736 of the book ( page 752 of the pdf available online). States $(*)$ and $(**)$
  • Generatingfunctionology by Herbert Wilf. Page 174 exercise 12 is related (in fact you the reader is expected to discover your identities), and $(**)$ appears in page 87 as a result of the theory developed in that chapter.

Both references are freely available online! :D
 
Last edited:
PaulRS said:
As stated, the result is not true, it should be: \[\sum_{j=k}^n (-1)^{n-j} S(n,j) s(j,k) = \sum_{j=k}^n (-1)^{n-j} s(n,j) S(j,k) =\delta_{n,k}\]

Thank you very much PaulRS for your reply.
But if you seach in google DLMF: §26.8 Set Partitions: Stirling Numbers and see Equation 26.8 therein,
you will find the formula I have mentioned above. Also I have multiplied the table of Stirling numbers with n=k=4, and I got the identity matrix.
I believe there is a straight computation of that formula.

Best regards.
bkarpuz
 
bkarpuz said:
Thank you very much PaulRS for your reply.
But if you seach in google DLMF: §26.8 Set Partitions: Stirling Numbers and see Equation 26.8 therein,
you will find the formula I have mentioned above. Also I have multiplied the table of Stirling numbers with n=k=4, and I got the identity matrix.
I believe there is a straight computation of that formula.

Best regards.
bkarpuz

Ah, I see, you are using a signed version of Stirling numbers! so actually $s_{mine}(n,k) = (-1)^{n-k} \cdot s_{yours} (n,k)$ and we agree. (Rofl)

I was using $s(n,k) = \left [ \begin{matrix}
n \\ k

\end{matrix} \right ] $ the number of permutations of $n$ elements with exactly $k$ cycles.

Minor modifications to the proof above get you to your identity.
 
Last edited:
Back
Top