atwood
- 9
- 0
I've seen the definition that an outer Lebesgue measure is defined as
m_n^* (A) = \inf \left\{ \sum_{k=1}^{\infty} l(I_k) \, \left| \, A \subset \bigcup_{k=1}^{\infty} I_k \right}
where Ik are n-dimensional intervals and l(Ik) is the geometric length.
It is not actually clear to me if A has to be a proper subset. That is, does
A \subset \bigcup_{k=1}^{\infty} I_k
actually mean
A \subseteq \bigcup_{k=1}^{\infty} I_k
or
A \subsetneq \bigcup_{k=1}^{\infty} I_k
?
m_n^* (A) = \inf \left\{ \sum_{k=1}^{\infty} l(I_k) \, \left| \, A \subset \bigcup_{k=1}^{\infty} I_k \right}
where Ik are n-dimensional intervals and l(Ik) is the geometric length.
It is not actually clear to me if A has to be a proper subset. That is, does
A \subset \bigcup_{k=1}^{\infty} I_k
actually mean
A \subseteq \bigcup_{k=1}^{\infty} I_k
or
A \subsetneq \bigcup_{k=1}^{\infty} I_k
?