MHB P-1 consecutive numbers coprime to n

  • Thread starter Thread starter shmounal
  • Start date Start date
  • Tags Tags
    Numbers
AI Thread Summary
For an integer n greater than 1, its smallest prime factor p limits the number of consecutive positive integers coprime to n to at most p - 1. If there were more than p - 1 consecutive integers, they would share a prime factor with n, violating coprimality. The maximum of p - 1 can be achieved by demonstrating p - 1 consecutive integers that are coprime to n. The greatest common divisor of p - 1 and n is p - 1 itself. Additionally, it can be shown that 2^n does not equal 1 modulo n.
shmounal
Messages
3
Reaction score
0
a) Let an integer $n > 1$ be given, and let $p$ be its smallest prime factor. Show
that there can be at most $p − 1$ consecutive positive integers coprime to $n$.
b) Show further that the number $p − 1$ in (a) cannot be decreased, by exhibiting
$p − 1$ consecutive positive integers coprime $n$.
c) What is gcd$(p − 1, n)$?
d)Show that $2^n \not\equiv 1 (mod n)$.

I think the first part has something to with the fact that two positive integers are coprime iff they have no prime factors in common. As if there were more than $p-1$ consecutive numbers then they would have a coprime in common. Not sure how to word this convincingly!

Not sure for b). Guessing I'd say c) is $p-1$, though not sure. d).. no clue!

If you can point me in the right direction I'd appreciate it, thanks.
 
Mathematics news on Phys.org
shmounal said:
a) Let an integer $n > 1$ be given, and let $p$ be its smallest prime factor. Show
that there can be at most $p − 1$ consecutive positive integers coprime to $n$.
b) Show further that the number $p − 1$ in (a) cannot be decreased, by exhibiting
$p − 1$ consecutive positive integers coprime $n$.
c) What is gcd$(p − 1, n)$?
d)Show that $2^n \not\equiv 1 (mod n)$.

I think the first part has something to with the fact that two positive integers are coprime iff they have no prime factors in common. As if there were more than $p-1$ consecutive numbers then they would have a coprime in common. Not sure how to word this convincingly!

Not sure for b). Guessing I'd say c) is $p-1$, though not sure. d).. no clue!

If you can point me in the right direction I'd appreciate it, thanks.

Considering that the number of coprimes of n is the Euler's function...

$\displaystyle \varphi(n)= n\ \prod_{p|n} (1-\frac{1}{p})$ (1)

... if $p_{0}$ is the smallest prime dividing n then is...

$\displaystyle \varphi(n)= \frac{n}{p_{0}}\ (p_{0}-1)\ \prod_{p|\frac{n}{p_{0}}} (1-\frac{1}{p})$ (2)

... and in any case the term $p_{0}-1$ is a factor of $\varphi(n)$...

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top