- #1
person123
- 307
- 45
Assume the jet is straight but the radius of the jet varies over it's length (like a jet of water falling which narrows due to gravitational acceleration). Also ignore viscosity. A pressure gradient would be required to accelerate the fluid radially. Because during an expansion transformation, the distance a point moves (and so its acceleration) is proportional to its distance from the origin, the radial acceleration of fluid parcels would be proportional to their distance from the middle of the jet. The radial acceleration is proportional to the radial pressure gradient. This would mean the pressure gradient would be proportional to the distance from the middle, which would mean the pressure distribution is parabolic (the integral of a linear function is quadratic).
This was my reasoning; however I don't know my assumptions are reasonable and if the conclusion is accurate, so I would be interested in people's input. Thanks!
This was my reasoning; however I don't know my assumptions are reasonable and if the conclusion is accurate, so I would be interested in people's input. Thanks!