MHB Parallelogram ABCD: Finding AC from PB & PD

Click For Summary
In parallelogram ABCD, where angles B and D are acute and angles A and C are obtuse, the intersection point P is formed by the perpendiculars from points C to line AB and from A to line BC. Given the lengths PB as 700 and PD as 821, the task is to find the length of diagonal AC. The geometric properties of the parallelogram and the relationships between the sides and angles are crucial for solving this problem. The solution involves applying the Pythagorean theorem or trigonometric relationships based on the given lengths. Ultimately, the calculation leads to the determination of the length of AC.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In parallelogram $ABCD$, $\angle B$ and $\angle D$ are acute while $\angle A$ and $\angle C$ are obtuse. The perpendicular from $C$ to $AB$ and the perpendicular from $A$ to $BC$ intersect at $P$ inside the parallelogram. If $PB=700$ and $PD=821$, find $AC$.
 
Mathematics news on Phys.org
[TIKZ]
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:C] (C) at (12, 0);
\coordinate[label=above:A] (A) at (3,10);
\coordinate (F) at (3,0);
\coordinate (E) at (0.991,3.303);
\coordinate[label=above: P] (P) at (3,2.7);
\coordinate[label=above: D] (D) at (15,10);
\draw (A) -- (B)-- (C)-- (D) -- (A);
\draw (C) -- (E);
\draw (A) -- (F);
\draw (P) -- (D);
\draw (F) rectangle +(-0.2, 0.2);
\draw[thick,dashed] (9,6.35) circle (7.023cm);
\begin{scope}[shift={(1,0)}]
\node[draw,rectangle,rotate=71] at (0.16,3.395){};
\end{scope}
[/TIKZ]

First note that $P$ is the orthocenter of $\triangle ABC$. Furthermore, note that from the perpendicularity $DA\perp AP$ and $DC\perp CP$, so quadrilateral $DAPC$ is cyclic. Furthermore, $DP$ is a diameter of circle $(DAPC)$. This is the circumcircle of $\triangle DAC$, which is congruent to $BCA$. As a result, if $R$ is the circumradius of $\triangle ABC$, then $PD=2R$.

Now I claim that $PB=2R\cos B$. To prove this, reflect $P$ across $AB$ to point $P'$. It is well-known that $P'$ lies on the circumcircle of $\triangle ABC$, so in particular the circumradii of $\triangle APB$ and $\triangle ACB$ are equal. But then by Law of Sines \[\dfrac{BP}{\sin\angle BAP}=\dfrac{BP}{\cos B}=2R\quad\implies\quad BP = 2R\cos B\]as desired. (An alternate way to see this is through the diagram itself: from right triangle trigonometry on triangles $DAP$ and $DCP$ it is not hard to see that $PA=2R\cos A$ and $PC=2R\cos C$, which by symmetry suggests $PB=2R\cos B$.)

Finally, note that by Law of Sines again we have $AC=2R\sin B$, so \[AC^2+BP^2=(2R\sin B)^2 + (2R\cos B)^2 = (2R)^2(\sin^2 B+\cos^2 B) = PD^2.\]Hence \[AC^2=PD^2-PB^2=821^2-700^2=(821-700)(821+700)=11^2\cdot 39^2\]and so $AC=11\cdot 39=\boxed{429}$.