MHB Parallelogram ABCD: Finding AC from PB & PD

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In parallelogram $ABCD$, $\angle B$ and $\angle D$ are acute while $\angle A$ and $\angle C$ are obtuse. The perpendicular from $C$ to $AB$ and the perpendicular from $A$ to $BC$ intersect at $P$ inside the parallelogram. If $PB=700$ and $PD=821$, find $AC$.
 
Mathematics news on Phys.org
[TIKZ]
\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:C] (C) at (12, 0);
\coordinate[label=above:A] (A) at (3,10);
\coordinate (F) at (3,0);
\coordinate (E) at (0.991,3.303);
\coordinate[label=above: P] (P) at (3,2.7);
\coordinate[label=above: D] (D) at (15,10);
\draw (A) -- (B)-- (C)-- (D) -- (A);
\draw (C) -- (E);
\draw (A) -- (F);
\draw (P) -- (D);
\draw (F) rectangle +(-0.2, 0.2);
\draw[thick,dashed] (9,6.35) circle (7.023cm);
\begin{scope}[shift={(1,0)}]
\node[draw,rectangle,rotate=71] at (0.16,3.395){};
\end{scope}
[/TIKZ]

First note that $P$ is the orthocenter of $\triangle ABC$. Furthermore, note that from the perpendicularity $DA\perp AP$ and $DC\perp CP$, so quadrilateral $DAPC$ is cyclic. Furthermore, $DP$ is a diameter of circle $(DAPC)$. This is the circumcircle of $\triangle DAC$, which is congruent to $BCA$. As a result, if $R$ is the circumradius of $\triangle ABC$, then $PD=2R$.

Now I claim that $PB=2R\cos B$. To prove this, reflect $P$ across $AB$ to point $P'$. It is well-known that $P'$ lies on the circumcircle of $\triangle ABC$, so in particular the circumradii of $\triangle APB$ and $\triangle ACB$ are equal. But then by Law of Sines \[\dfrac{BP}{\sin\angle BAP}=\dfrac{BP}{\cos B}=2R\quad\implies\quad BP = 2R\cos B\]as desired. (An alternate way to see this is through the diagram itself: from right triangle trigonometry on triangles $DAP$ and $DCP$ it is not hard to see that $PA=2R\cos A$ and $PC=2R\cos C$, which by symmetry suggests $PB=2R\cos B$.)

Finally, note that by Law of Sines again we have $AC=2R\sin B$, so \[AC^2+BP^2=(2R\sin B)^2 + (2R\cos B)^2 = (2R)^2(\sin^2 B+\cos^2 B) = PD^2.\]Hence \[AC^2=PD^2-PB^2=821^2-700^2=(821-700)(821+700)=11^2\cdot 39^2\]and so $AC=11\cdot 39=\boxed{429}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top