I Parameterization of linear operators on the holomorphisms

Whiteboard_Warrior
Messages
2
Reaction score
0
Let D represent the differentiation of a single-parameter holomorphism, with respect to its parameter x. It's clear that for any sequence of holomorphisms g on x, sigma[k=0,inf](g[k](x)*D^k) is a linear operator on the space of holomorphisms. Is this a complete parameterization of the linear maps on the space of holomorphisms? If so, could someone provide a proof of this? If not, what are some counterexamples?

P.S. I promise I'll post more interesting questions in the future :)
 
Physics news on Phys.org
bump?
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top