cse63146
- 435
- 0
Find \frac{\partial y}{\partial x} of 3sin (x^2 + y^2) = 5cos(x^2 - y^2)
\partial y = 6ycos(x^2 + y^2) - 10ysin(x^2 - y^2)
\partial x = 6xcos(x^2 + y^2) + 10xsin(x^2 - y^2)
so I thought \frac{\partial y}{\partial x} = \frac{6ycos(x^2 + y^2) - 10ysin(x^2 - y^2)}{6xcos(x^2 + y^2) + 10xsin(x^2 - y^2)}
but instead, the answer is supposed to be:
\frac{\partial y}{\partial x} = - \frac{6xcos(x^2 + y^2) + 10xsin(x^2 - y^2)}{6ycos(x^2 + y^2) - 10ysin(x^2 - y^2)}
\partial y = 6ycos(x^2 + y^2) - 10ysin(x^2 - y^2)
\partial x = 6xcos(x^2 + y^2) + 10xsin(x^2 - y^2)
so I thought \frac{\partial y}{\partial x} = \frac{6ycos(x^2 + y^2) - 10ysin(x^2 - y^2)}{6xcos(x^2 + y^2) + 10xsin(x^2 - y^2)}
but instead, the answer is supposed to be:
\frac{\partial y}{\partial x} = - \frac{6xcos(x^2 + y^2) + 10xsin(x^2 - y^2)}{6ycos(x^2 + y^2) - 10ysin(x^2 - y^2)}