Bill Foster
- 334
- 0
Homework Statement
I'm looking for \frac{\partial{P}}{\partial{V}} at fixed T and fixed S.
Homework Equations
P=\frac{TS}{4V}
The Attempt at a Solution
\frac{dP}{dV}=\frac{\partial{P}}{\partial{V}}+\frac{\partial{P}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{P}}{\partial{S}}\frac{dS}{dV}
\frac{\partial{P}}{\partial{V}}=-\frac{TS}{4V^2}
\frac{\partial{P}}{\partial{T}}=\frac{S}{4V}
\frac{\partial{P}}{\partial{S}}=\frac{T}{4V}
\frac{dP}{dV}=\frac{\partial{P}}{\partial{V}}+\frac{\partial{P}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{P}}{\partial{S}}\frac{dS}{dV}=-\frac{TS}{4V^2}+\frac{S}{4V}\frac{dT}{dV}+\frac{T}{4V}\frac{dS}{dV}
At constant T, I get this: \frac{dP}{dV}=-\frac{TS}{4V^2}+\frac{T}{4V}\frac{dS}{dV}
At constant S, I get this: \frac{dP}{dV}=-\frac{TS}{4V^2}+\frac{S}{4V}\frac{dT}{dV}
What do I do about the other differentials: \frac{dS}{dV} and \frac{dT}{dV}?
Wouldn't this also be true?
\frac{dS}{dV}=\frac{\partial{S}}{\partial{V}}+\frac{\partial{S}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{S}}{\partial{P}}\frac{dP}{dV}
\frac{dT}{dV}=\frac{\partial{T}}{\partial{V}}+\frac{\partial{T}}{\partial{S}}\frac{dS}{dV}+\frac{\partial{T}}{\partial{P}}\frac{dP}{dV}