Partial Derivatives for P, S, T in Differential Calculus

  • Thread starter Thread starter Bill Foster
  • Start date Start date
  • Tags Tags
    Differentials
Bill Foster
Messages
334
Reaction score
0

Homework Statement




I'm looking for \frac{\partial{P}}{\partial{V}} at fixed T and fixed S.


Homework Equations



P=\frac{TS}{4V}

The Attempt at a Solution



\frac{dP}{dV}=\frac{\partial{P}}{\partial{V}}+\frac{\partial{P}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{P}}{\partial{S}}\frac{dS}{dV}

\frac{\partial{P}}{\partial{V}}=-\frac{TS}{4V^2}

\frac{\partial{P}}{\partial{T}}=\frac{S}{4V}

\frac{\partial{P}}{\partial{S}}=\frac{T}{4V}

\frac{dP}{dV}=\frac{\partial{P}}{\partial{V}}+\frac{\partial{P}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{P}}{\partial{S}}\frac{dS}{dV}=-\frac{TS}{4V^2}+\frac{S}{4V}\frac{dT}{dV}+\frac{T}{4V}\frac{dS}{dV}

At constant T, I get this: \frac{dP}{dV}=-\frac{TS}{4V^2}+\frac{T}{4V}\frac{dS}{dV}

At constant S, I get this: \frac{dP}{dV}=-\frac{TS}{4V^2}+\frac{S}{4V}\frac{dT}{dV}

What do I do about the other differentials: \frac{dS}{dV} and \frac{dT}{dV}?

Wouldn't this also be true?

\frac{dS}{dV}=\frac{\partial{S}}{\partial{V}}+\frac{\partial{S}}{\partial{T}}\frac{dT}{dV}+\frac{\partial{S}}{\partial{P}}\frac{dP}{dV}

\frac{dT}{dV}=\frac{\partial{T}}{\partial{V}}+\frac{\partial{T}}{\partial{S}}\frac{dS}{dV}+\frac{\partial{T}}{\partial{P}}\frac{dP}{dV}
 
Physics news on Phys.org


You want to find <br /> \frac{\partial{P}}{\partial{V}}<br />

and your second line is

<br /> \frac{\partial{P}}{\partial{V}}=-\frac{TS}{4V^2}<br />

So... you're done?
 


Office_Shredder said:
You want to find <br /> \frac{\partial{P}}{\partial{V}}<br />

and your second line is

<br /> \frac{\partial{P}}{\partial{V}}=-\frac{TS}{4V^2}<br />

So... you're done?


Yes. That's at constant T and constant S.

Is it the same if T is constant and S is not constant? Or vice-versa?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top