Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Partial Differential Equations - Variable Seperable Solutions

  1. Feb 3, 2006 #1
    Hi there,

    Does anyone know of a proof of why, in partial DEs, one can assume the existence of variable seperable solutions, then take the linear combination of all of them to be the general solution? Why can't there be any other funny solutions that fall outside the space spanned by these variable seperable ones?
  2. jcsd
  3. Feb 3, 2006 #2


    User Avatar
    Science Advisor

    Because (almost) any function can be written that way! It's not a matter of "no solutions that fall outside the space"- there are (almost)no functions that fall outside the space- if you allow infinite sums. For example, any analytic function of x and y can be written as a Taylor series in x and y- a sum powers of x and powers of y. Any periodic function of x and y, even if not continuous, can be written as a sum of products of sin or cos of x times sin or cos of y. If you allow integrals rather than sums of such functions, such as Fourier Transforms, the space of all functions that can be written in that form is much larger.
  4. Feb 3, 2006 #3


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    Dearly Missed

    We are talking about properties of solutions to LINEAR partial DE's here, I hope.
    Last edited: Feb 3, 2006
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook