Partial integration

  • Thread starter kallazans
  • Start date
  • #1
5
0
if you are not lazy, you will answer what is the general antiderivative of (2x^3+3x^2+x-1)/((x+1)*((x^2+2x+2)^2))
 
Last edited:

Answers and Replies

  • #2
248
0
Originally posted by kallazans
S((2x^3+3x^2+x-1)/(x+1)(x^2+2x+2))dx!
are you like this?

I don't understand your question, and your equation is unclear. Do you mean

[tex]\int ((2x^3+3x^2+x-1)/(x+1)(x^2+2x+2)) {\rm d}x =[/tex]

[tex] \int\frac{2x^3+3x^2+x-1}{x+1}(x^2+2x+2){\rm d}x =[/tex]

[tex]-x+\frac{x^2}{2}+2x^3+\frac{5x^4}{4}+\frac{2x^5}{5}-\log(1+x)[/tex]

or do you mean

[tex]\int ((2x^3+3x^2+x-1)/\left((x+1)(x^2+2x+2))\right) {\rm d}x =[/tex]

[tex]\int\frac{2x^3+3x^2+x-1}{(x+1)(x^2+2x+2)}{\rm d}x =[/tex]

[tex]2x-\arctan(1+x)-\log(1+x)-\log(2+(2+x)x)[/tex]
 

Related Threads on Partial integration

  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
7
Views
2K
Replies
14
Views
3K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
1
Views
838
Replies
27
Views
5K
  • Last Post
Replies
4
Views
778
Top