Particle definition in arbitrary spacetimes

femtofranco
Messages
9
Reaction score
0
Hello, I am reading up on QFT in curved spacetimes, and am aware that states of QFT's in such spacetimes, have, in general, no physically meaningful particle definitions. I was just hoping someone could clarify what is meant by "physically meaningful."
 
Physics news on Phys.org
It means covariant, or independent on the choice of the time coordinate.
Sometimes it may mean independent on the observer, but others may say that observer dependence is physically meaningful.
 
Suggested reading:

http://arxiv.org/abs/gr-qc/0409054"
What is a particle? by Daniele Colosi and Carlo Rovelli
Theoretical developments related to the gravitational interaction have questioned the notion of particle in quantum field theory (QFT). For instance, uniquely-defined particle states do not exist in general, in QFT on a curved spacetime. More in general, particle states are difficult to define in a background-independent quantum theory of gravity. These difficulties have lead some to suggest that in general QFT should not be interpreted in terms of particle states, but rather in terms of eigenstates of local operators. Still, it is not obvious how to reconcile this view with the empirically-observed ubiquitous particle-like behavior of quantum fields, apparent for instance in experimental high-energy physics, or "particle"-physics. Here we offer an element of clarification by observing that already in flat space there exist --strictly speaking-- two distinct notions of particles: globally defined $n$-particle Fock-states and *local particle states*. The last describe the physical objects detected by finite-size particle detectors and are eigenstates of local field operators. In the limit in which the particle detectors are appropriately large, global and local particle states converge in a weak topology (but not in norm). This observation has little relevance for flat-space theories --it amounts to a reminder that there are boundary effects in realistic detectors--; but is relevant for gravity. It reconciles the two points of view mentioned above. More importantly, it provides a definition of local particle state that remains well-defined even when the conventional global particle states are not defined. This definition plays an important role in quantum gravity.

I found it very helpful, hope you will enjoy it!
Frances
 
Last edited by a moderator:
Thank you, both. The whole matter seems much clearer to me.

And I must say, that was a lovely article.
 
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...
this thread is to open up discussion on Gravi-GUT as theories of everything GUT or Grand Unified Theories attempt to unify the 3 forces of weak E&M and strong force, and Gravi-GUT want to add gravity. this peer reviewed paper in a journal on Gravi-GUT Chirality in unified theories of gravity F. Nesti1 and R. Percacci2 Phys. Rev. D 81, 025010 – Published 14 January, 2010 published by Physical Review D this paper is cited by another more recent Gravi-GUT these papers and research...
In LQG and LQC there are solutions called "black to white transition". I'll add some references: (Rovelli)https://arxiv.org/abs/1905.07251 (Rovelli)https://arxiv.org/abs/2302.03872 (Rovelli)https://arxiv.org/abs/1803.06330 (Rovelli)https://arxiv.org/pdf/1802.04264 (Rovelli)https://arxiv.org/abs/2108.12823 https://arxiv.org/abs/2304.02691 https://arxiv.org/abs/2110.07589 https://arxiv.org/abs/2009.01788 https://arxiv.org/abs/1911.12646 https://arxiv.org/abs/1801.03027...
Back
Top