Partition function of simple system

unscientific
Messages
1,728
Reaction score
13

Homework Statement



2gwyweb.png


A molecule has 4 states of energy -1, 0,0 and 1. Find its partition function and limit of energy as T → ∞.

Homework Equations


The Attempt at a Solution



Z = \sum_r e^{-\beta E} = e^{-\beta} + 2 + e^{\beta}

U = -\frac{\partial ln(Z)}{\partial \beta} = \frac{e^{-\beta} - e^{\beta}}{e^{-\beta} + 2 + e^{\beta}}

As ##T→\infty##, ##exp(-\beta) \approx 1 - \beta## and ##exp(\beta) \approx 1 + \beta##.

Thus,
U \approx \frac{(1-\beta) - (1+\beta)}{2 + (1+\beta) + (1-\beta)} = -\frac{\beta}{2} = -\frac{1}{2kT}

The equipartition theorem should take over with Energy = 4 * (1/2)kT = 2kT = 2/β.
But instead I'm getting -β/2.
 
Physics news on Phys.org
bumpp
 
Ammm, okay...

Your calculation is right, at least I got the same result for ##U##.

my comment about the equipartition theorem: My experiences are that you really have to master thermodynamics to completely understand this theorem. Lots of results can be "guessed" if you truly understand the concept. I was never that good at it therefore I always had to do the long calculations.
Ok, now to tell something that is actually useful:

from http://chemwiki.ucdavis.edu/Physical_Chemistry/Statistical_Mechanics/Equipartition_Theorem (Degrees of freedom):
"The law of equipartition of energy states that each quadratic term in the classical expression for the energy contributes ½kBT to the average energy."

Let's take a molecule of ideal gas for example: One molecule has in fact ##6## degrees of freedom. ##3## of them precisely describe it's position and are called coordinates (x,y,z), the other ##3## are of course components of momentum (note that momentum is quadratic in energy ##E_k=\frac{p^2}{2m}##). Each component of momentum therefore contributes ##\frac{1}{2}kT##, so the average energy of molecule of ideal gas is ##\frac{3}{2}kT##.

I guess all I am trying to say is that you have no quadratic degrees of freedom and therefore your calculation using equipartition theorem is wrong.

ps: Keep in mind that I never mastered that theorem. I hope I didn't just make a fool out of myself.
 
try expanding the exponential in different form
 
Exp(-x) = 1/ exp(x) = 1/ (1+x)

try in this form and show what you get, i hope this work
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top