Partition function of simple system

unscientific
Messages
1,728
Reaction score
13

Homework Statement



2gwyweb.png


A molecule has 4 states of energy -1, 0,0 and 1. Find its partition function and limit of energy as T → ∞.

Homework Equations


The Attempt at a Solution



Z = \sum_r e^{-\beta E} = e^{-\beta} + 2 + e^{\beta}

U = -\frac{\partial ln(Z)}{\partial \beta} = \frac{e^{-\beta} - e^{\beta}}{e^{-\beta} + 2 + e^{\beta}}

As ##T→\infty##, ##exp(-\beta) \approx 1 - \beta## and ##exp(\beta) \approx 1 + \beta##.

Thus,
U \approx \frac{(1-\beta) - (1+\beta)}{2 + (1+\beta) + (1-\beta)} = -\frac{\beta}{2} = -\frac{1}{2kT}

The equipartition theorem should take over with Energy = 4 * (1/2)kT = 2kT = 2/β.
But instead I'm getting -β/2.
 
Physics news on Phys.org
bumpp
 
Ammm, okay...

Your calculation is right, at least I got the same result for ##U##.

my comment about the equipartition theorem: My experiences are that you really have to master thermodynamics to completely understand this theorem. Lots of results can be "guessed" if you truly understand the concept. I was never that good at it therefore I always had to do the long calculations.
Ok, now to tell something that is actually useful:

from http://chemwiki.ucdavis.edu/Physical_Chemistry/Statistical_Mechanics/Equipartition_Theorem (Degrees of freedom):
"The law of equipartition of energy states that each quadratic term in the classical expression for the energy contributes ½kBT to the average energy."

Let's take a molecule of ideal gas for example: One molecule has in fact ##6## degrees of freedom. ##3## of them precisely describe it's position and are called coordinates (x,y,z), the other ##3## are of course components of momentum (note that momentum is quadratic in energy ##E_k=\frac{p^2}{2m}##). Each component of momentum therefore contributes ##\frac{1}{2}kT##, so the average energy of molecule of ideal gas is ##\frac{3}{2}kT##.

I guess all I am trying to say is that you have no quadratic degrees of freedom and therefore your calculation using equipartition theorem is wrong.

ps: Keep in mind that I never mastered that theorem. I hope I didn't just make a fool out of myself.
 
try expanding the exponential in different form
 
Exp(-x) = 1/ exp(x) = 1/ (1+x)

try in this form and show what you get, i hope this work
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top