Pendulum - find maximum angular displacement

Click For Summary
The maximum angular displacement of the pendulum described by the equation theta=0.2cos(8t) is 0.2 radians. To find the rate of change of theta at t=3 seconds, the derivative of the equation was calculated, leading to the critical point where the derivative equals zero. This process confirmed that the maximum displacement remains at 0.2 radians. Graphing the function helped visualize the pendulum's behavior and confirm the findings. The discussion highlights the importance of understanding local extrema and the application of calculus in solving the problem.
Lunadora
Messages
5
Reaction score
0

Homework Statement


A 15-centimeter pendulum moves according to the equation:

theta=0.2cos8t

where theta is the angular displacement from the vertical in radians and t is the time in seconds. Determine the maximum angular displacement and the rate of change of theta when t=3 seconds.


Homework Equations


See, here's where I get stuck. It doesn't seem like I'm given enough information to do ANYTHING with this problem. At first I thought I could find the absolute maximum value by solving for theta at the endpoints and critical numbers, but I don't have any endpoints. Any physics equations I could use go out the window as well, because I have no initial displacement or velocity or any such stuff.


The Attempt at a Solution


Insert an hour of frustrated grumbling here, with no results.
 
Physics news on Phys.org
Recall from calculus that rate of change is equivalent to the derivative.

The local extrema of a function are located at the critical points. You can a find a critical point by setting the derivative to 0.

You should be good to go now.
 
Riiiiight, I don't need the absolute, I can just find the local. Thank you very much! xD
 
Okay, so I took the derivative and set it equal to zero, and now I have

0=-1.6sin8t

and no theta at all, which is what I am solving for. Also, t would equal 90 (or, since it's in radians, pi over 2), and when you sub it back into the original equation, theta is equal to 0.2 radians, which cannot be the right answer. Any help as to what I'm doing wrong?
 
You're absolutely right, the maximum angular displacement is .2.

Try graphing .2cos(8t) to illustrate the pendulum's behavior.
 
It IS 0.2? Phew, thank you. I graphed it, too, I see it now. Thanks for your help!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
5K