Perfectly Elastic Collision (Easy, just confusing)

AI Thread Summary
In a perfectly elastic collision involving two particles, one with mass 2m and initial velocity v, and another with mass m at rest, the final velocities need to be determined using the conservation of momentum and energy equations. The participant expresses confusion about how to manipulate the equations to find the final velocities, v1 and v2, and is struggling with the complexity of the resulting expressions. They mention that the expected outcome for the second particle's final velocity should be a simpler form, like 1/4v, rather than a complicated expression involving square roots. The discussion emphasizes the importance of correctly applying the conservation laws and suggests using the restitution equation for simplification. Overall, the participant seeks clarity on solving the equations effectively.
ForrestFire
Messages
3
Reaction score
0

Homework Statement



Let two particles of collide in a perfectly elastic collision. Particle 1 has a mass of 2m, while particle 2 has a mass of m. Particle 1 has initial velocity v, directed to the right, while particle 2 is at rest. What are the final velocities, v1 and v2, of particle 1 and particle 2?

Homework Equations



Conservation of Momentum

m1v1+m2v2=m1v3+m2v4

Conservation of Energy

(1/2)mv1^2+(1/2)mv2^2=(1/2)mv3^2+(1/2)mv4^2

The Attempt at a Solution



I'm not sure what to do. I've been messing around with stuff, but I can't seem to get the right answer, and I'm running out of answers on my online homework. I know you have to solve in one equation, and then substitute to the other in order to get down to a workable amount of variables, but I'm not entirely sure how. I"m pretty sure the answer has to be in the form of (constant)v, to show the ratio of the initial velocity that each object was left with, and I just don't know how to whittle it down to that.
 
Physics news on Phys.org
v1 and v2 are already given. You have two equations in two variables. Solve it. To make it simpler you can also use the equation from restitution instead of energy. :wink:
 
See, I thought it would be straightforward, but I'm getting a very weird answer, with a lot of square roots and such. My answer for V4, which is the velocity of the second object after the collision, was:

sqrt(v)*sqrt(sqrt(v^2-2)+v)

When it should be some nice number like 1/4v.

I don't understand what I'm doing :-\
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top