Period for SHM of a block on a spring shot by a bullet

AI Thread Summary
The discussion revolves around a physics problem involving a bullet embedding into a block attached to a spring, with the goal of calculating the period of simple harmonic motion (SHM) after the impact. The user initially calculated the final velocity of the block and bullet system using conservation of momentum, then determined the spring constant by equating kinetic energy to potential energy at maximum compression. However, a critical error was identified regarding the mass of the block, which was mistakenly noted as 0.922 kg instead of the correct 0.992 kg. This miscalculation led to an incorrect period result, prompting the user to seek clarification and assistance. The conversation highlights the importance of careful attention to detail in physics problems.
ggorrilla
Messages
2
Reaction score
0
So I've been working on this problem for a while and can't seem to come up with anything and I don't really understand why I'm wrong in what I did. I could just get the answer online, but I actually want to understand what's happening.

Homework Statement



A rifle bullet with mass 8.12g and initial horizontal velocity 250m/s strikes and embeds itself in a block with mass 0.992kg that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is attached to the wall. The impact compresses the spring a maximum distance of 18.0cm. After the impact, the block moves in SHM. Calculate the period of this motion.

Homework Equations



(Period) T = 2pi*sqrt(m/k)
(Kinetic Energy) K = .5*m*v^2
(Potential Energy) U(spring) = .5*k*x^2
(Momentum) P = mv

The Attempt at a Solution


I'll use m for the mass of the bullet and M for the mass of the block.

So first I used conservation of momentum to assume that m*v(bullet) = (M+m)(v(final)).
Plugging in I got (.00812kg)(250m/s) = (.922kg+.00812kg)*v(final)
v(final) = 2.182514m/s

So then I assumed that the energy that the system has right after the bullet makes contact is fully kinetic, since in SHM all of the energy is kinetic when at the origin. I think I'm right in assuming this, but maybe that's where I went wrong. But anyways, continuing with what I took as the assumption, I then used the formula for kinetic energy.
K = .5*(M+m)(v(final))^2 So,
K = .5*(.922kg+.00812kg)*(2.182514m/s)^2 = 2.214492J

So then I went and assumed that all energy would be potential when the spring is fully compressed.

U = .5*k*x^2
2.214492J = .5*k*(.18m)^2
k = 136.697066N/m

So then I simply plugged the k into the formula for period and got:
T = 2*pi*sqrt((M+m)/k)
T = 2*pi*sqrt((.922kg+.00812kg)/136.697066N/m)
T = .518286s

Apparently this solution is wrong though, so I was wondering if anyone could help me out so that I could better understand this stuff. : /
 
Last edited:
Physics news on Phys.org
ggorrilla said:
So I've been working on this problem for a while and can't seem to come up with anything and I don't really understand why I'm wrong in what I did. I could just get the answer online, but I actually want to understand what's happening.

Homework Statement



A rifle bullet with mass 8.12g and initial horizontal velocity 250m/s strikes and embeds itself in a block with mass 0.992kg that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is attached to the wall. The impact compresses the spring a maximum distance of 18.0cm. After the impact, the block moves in SHM. Calculate the period of this motion.

Homework Equations



(Period) T = 2pi*sqrt(m/k)
(Kinetic Energy) K = .5*m*v^2
(Potential Energy) U(spring) = .5*k*x^2
(Momentum) P = mv

The Attempt at a Solution


I'll use m for the mass of the bullet and M for the mass of the block.

So first I used conservation of momentum to assume that m*v(bullet) = (M+m)(v(final)).
Plugging in I got (.00812kg)(250m/s) = (.922kg+.00812kg)*v(final)
v(final) = 2.182514m/s

So then I assumed that the energy that the system has right after the bullet makes contact is fully kinetic, since in SHM all of the energy is kinetic when at the origin. I think I'm right in assuming this, but maybe that's where I went wrong. But anyways, continuing with what I took as the assumption, I then used the formula for kinetic energy.
K = .5*(M+m)(v(final))^2 So,
K = .5*(.922kg+.00812kg)*(2.182514m/s)^2 = 2.214492J

So then I went and assumed that all energy would be potential when the spring is fully compressed.

U = .5*k*x^2
2.214492J = .5*k*(.18m)^2
k = 136.697066N/m

So then I simply plugged the k into the formula for period and got:
T = 2*pi*sqrt((M+m)/k)
T = 2*pi*sqrt((.922kg+.00812kg)/136.697066N/m)
T = .518286s

Apparently this solution is wrong though, so I was wondering if anyone could help me out so that I could better understand this stuff. : /

I would certainly go about this problem the same way you have - so I would suggest re-checking your calculations in case there is a slip somewhere.
 
ggorrilla said:

Homework Statement



A rifle bullet with mass 8.12g and initial horizontal velocity 250m/s strikes and embeds itself in a block with mass 0.992kg ...


The Attempt at a Solution


I'll use m for the mass of the bullet and M for the mass of the block.

So first I used conservation of momentum to assume that m*v(bullet) = (M+m)(v(final)).
Plugging in I got (.00812kg)(250m/s) = (.922kg+.00812kg)*v(final)
/

Is the mass of the block 0.992 kg or 0.922 kg?

ehild
 
AAHHH! I can't believe that I didn't catch that, I reworked the entire problem for hours and couldn't find a way to get .557s, which was apparently the answer, but that was my mistake every single time. The correct mass is .992kg, I feel like such an idiot, thank you so much for the help!
 
ggorrilla said:
AAHHH! I can't believe that I didn't catch that,

Such things happen with everybody...:smile:


ehild
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top