Consider the following: in how many possibilities do the similar balls appear?
Say only ball 1 appears in spot 1 (ball 2 and 3 do not appear), you have (8-3)*(8-4) = 20 possibilities of the sort. Now say ball 1 appear in spot 2, you still have 20 possibitities. Now it's easy to see why the total number of possibilties is 3*20 = 60. Now consider ball 2 and 3. You have for each 60 possibities. However since ball 1, 2 and 3 are similar, all the possibilities that occur for ball 2 and 3 have equivalents in the possibilities for ball 1, thus we only take 60 into account.
Next, use the same procedure for 2 balls appearing:In how many ways can 2 balls be rearanged with 3 spots? The awnser is 3*2 = 6. For the remaning spot, how many possibilities can you have? The awnser is 8-3 = 5. Now with using combinations, the number of possibilities is 6*5 = 30. Now since we are considering 2 balls, we are dealing with reoccuring possibilities (i.e. ball 1 inversed with ball 2 etc.). The question is, if there's 2 balls, in how many ways can they be interchanged? The awnser is simply 2*1 = 2. Since we do not wish to have reoccurences, we devided 30 by 2, giving 15.
We then consider the 3 similar balls showing up. It should be obvious that this account for only 1 possibility.
Now we have 60 + 15 + 1 = 76 as the final awnser.