Michael_Light said:
Homework Statement
I have 6 cards with the digits 1,2,2,3,4 and 5 written on each of them. In how many ways can I arrange 3 out of the 6 cards in a row?
Homework Equations
The Attempt at a Solution
Case 1: Only one card with digit '2' two is taken, so 5P3 =60
Case 2: Both cards with digit '2' are used. So 4 x (3!/2) =12
Total: 60+12 =72
My question is, do we need to consider the third case where no cards with digit '2' is taken, which gives additional arrangement of 4! =24?
I really confused.. Please guide me.. Or do we have other method to solve this..? Thanks..
We can use a method similar to yours, I believe, if we modify it slightly. And yes, you need to consider when no cards with a 2 is chosen. Let me go over the procedure for one case.
Case 1: one 2
If one 2 is chosen, you can think of a single slot already taken. Hence, you can first find the number of ways to order 2 from a set of 4 (since 4 numbers remain after removing the two 2s and you must fill 2 slots since 1 is taken by a 2). But there is an additional step. You must multiply by 3, because your 2 could be in slot 1, slot2, or slot3. Think about it this way, nPr(4,2) = 12 and they are
13 31 14 41 15 51 34 43 35 53 45 54
You then can put the 2 at the end
213 231 214 241 215 251 234 243 235 253 245 254
Middle
...
Or end
...
So it is 3 times the result.
We can do a smaller example to explore this logic:
Order 2 of 4 where you can pick from {1,2,2,4}.
If you want to know how many ways you can do it, you can add the number of ways for having a single 2, no 2, or both 2s.
Case 1: one 2
12
21
32
23
So 4. Let us apply the logic above to compute this now: nPr(2,1)*2=4. So we have to choose 1 (since 1 slot remains unfilled) from a selection of 2 (since 1 and 4 are all that remain after removing 2) where order matters and then multiply it by two, because the 2 can be in slot 1 or slot2.
Just a side note, in general, the amount you multiply by is nCr(slots,indistinguishable objects taken to be already chosen). To bring concreteness, let us try to compute the 3 we already thought out in the first example. We can think of choosing from 3 positions 1 slot. Order doesn't matter, because the 2s being placed are indistinguishable. So nCr(3,1) = 3. If we had, instead, two 2s known to be placed in a selection of 4 cards, we'd have to multiply by
22xx
2x2x
2xx2
x22x
x2x2
xx22
6. So nCr(4,2) = 6
Case 2: no 2s
Well, you then choose 2 out of the remaining set: nPr(2,2)=2. Verification:
14
41
Case 3: both 2s
Well, in this simple example, there is only 1 way to have 22.
1
Total: 1 + 4 + 2 = 7.