How many permutations fix at least one element for fixed n?

  • Thread starter Thread starter jostpuur
  • Start date Start date
  • Tags Tags
    Permutations
AI Thread Summary
For a fixed n, the discussion revolves around calculating the number of permutations in S_n that fix at least one element. The initial approach involves considering specific cases where certain elements are fixed, leading to a combinatorial exploration of how many permutations can be formed under these constraints. The conversation highlights the complexity of counting permutations that fix multiple elements, suggesting that a more systematic method, such as induction, might yield clearer results. A key insight is that the total number of permutations fixing at least one element plus those fixing none equals the total number of permutations. The thread emphasizes the need for a structured approach to derive a general formula for the problem.
jostpuur
Messages
2,112
Reaction score
19
For fixed n\in\mathbb{N}, how many permutations X\in S_n there exists, so that X(t)=t at least for some t\in\{1,2,3,\ldots,n\}?

Is the solution to this well known? I couldn't solve it by the most direct approach that seemed to be the only apparent way. This is how far I got:

Question 1: How many ways is there to choose X so that X(1)=1? The answer is clearly (n-1)!.

Remark: It would not make sense to next ask that how many ways is there to choose X so that X(2)=2, because some of these X have already been counted.

Question 2: How many ways is there to choose X so that X(1)!=1 and X(2)=2? The X(1) must be different from 1 and 2, so it can be chosen in n-2 different ways. Remaining values X(3),...,X(n) can be chosen in (n-2)! different ways, so the answer is (n-2)*(n-2)!.

Question 3: How many ways is there to choose X so that X(1)!=1, X(2)!=2, and X(3)=3. The choice of X(1) has effect on how many ways the X(2) can be chosen. If we choose X(1)=2, then X(2) can be chosen in n-2 different ways. Remaining X(4),...,X(n) can be chosen in (n-3)! different ways. If we instead choose X(1)!=2, then X(1) can be chosen in n-2 different ways, X(2) can be chosen in n-3 different ways, and again remaining X(4),...,X(n) can be chosen in (n-3)! different ways. So the answer is ((n-2)+(n-2)*(n-3))*(n-3)!.

Question 4: How many ways is there to choose X so that X(1)!=1, X(2)!=2, X(3)!=3 and X(4)=4? If we choose X(1)=2, then [if we choose X(2)=3, then blabla. If we instead choose X(2)!=3, then blabla]. If we choose X(1)=3, then blabla. If we choose X(1)!=2 and X(1)!=3, then blabla. ARGH! :frown:

...

This doesn't seem to be giving the answer.
 
Last edited:
Mathematics news on Phys.org
Or did I post this too soon again. The answer to the question 4 seems to be 2*((n-2)+(n-2)*(n-3))*(n-4)!. Perhaps some pattern arises if one proceeds by force...
 
Hint: the number of permutations that fixes at least one t plus the number of permutations that fixes none is the total number of permutations. Now try induction (how many are there for n = 2? If I now consider permutations of three elements, how many ways are there to make each of these into a permutation of all elements?)

(Disclaimer: looked at this briefly, but cannot guarantee it will work. Maybe I missed something.)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top