MHB Perpendicular Bisector: Understanding the Wording

  • Thread starter Thread starter Yazan975
  • Start date Start date
  • Tags Tags
    Perpendicular
Click For Summary
The discussion focuses on understanding the concept of a perpendicular bisector in geometry. It clarifies that the slope of a line through two points can be calculated, and for two perpendicular lines, their slopes multiply to -1. The midpoint between the points (1, 2) and (-5, -4) is determined to be (-2, 3). The next step involves finding the equation of the line that passes through this midpoint with a slope of -1. The conversation emphasizes the importance of both the midpoint and the negative reciprocal relationship of slopes in defining the perpendicular bisector.
Yazan975
Messages
30
Reaction score
0
View attachment 8416

I know that when two lines are perpendicular their gradients multiply to -1 but I don't get the wording here.
Any suggestions?
 

Attachments

  • Screen Shot 2018-09-17 at 8.58.47 PM-min.png
    Screen Shot 2018-09-17 at 8.58.47 PM-min.png
    21.1 KB · Views: 109
Mathematics news on Phys.org
The line through (1, 2) and (-5, -4) has slope $\frac{-5- 1}{-4- 2}= \frac{-6}{6}= 1$ so any line perpendicular to that has slope -1. Further the perpendicular **bisector** goes through the point exactly half way between (1, 2) and (-5, 4) which is $\left(\frac{1+ (-5)}{2}, \frac{2+ 4}{2}\right)$$= \left(\frac{-4}{2},\frac{6}{3}\right)= (-2, 3)$.

What is the equation of the line through (-2, 3) with slope -1?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
1K
Replies
4
Views
2K