VinnyCee
- 486
- 0
Homework Statement
Apply the regular perturbation method to solve the following ordinary differential equation
\left(1\,+\,\epsilon\,y\right)\,\frac{dy}{dx}\,+\,y\,=\,0
subject to
x\,=\,1;\,y\,=\,1
Show that the asymptotic solution is of the form
y\,=\,e^{1\,-\,x}\,+\,\epsilon\,\left[e^{1\,-\,x}\,-\,e^{2\,(1\,-\,x)}\right]\,+\,\dots
Homework Equations
http://www.sm.luth.se/~johanb/applmath/chap2en/index.html"
The Attempt at a Solution
First, I get the base case by setting epsilon to zero.
\frac{dy_0}{dx}\,+\,y_0\,=\,0
Am I supposed to use the "subject to" conditions now?
\frac{dy_0}{dx}\,=\,-y_0\,=\,-1
I have no idea if that is what I am supposed to do, I hope so otherwise I am completely lost here.
Now, I assume that a solution is of the form
y\,=\,y_0\,+\,\epsilon\,y_1\,+\,\epsilon^2\,y_2\,+\,\dots
Differentiating that approximation
\frac{dy}{dx}\,=\,\frac{dy_0}{dx}\,+\,\epsilon\,\frac{dy_1}{dx}\,+\,\epsilon^2\,\frac{dy_2}{dx}\,+\,\dots
Expanding the original equation given
\frac{dy}{dx}\,+\,\epsilon\,y\,\frac{dy}{dx}\,+\,y\,=\,0
and substituting the approximations into it
\left[\frac{dy_0}{dx}\,+\,\epsilon\,\frac{dy_1}{dx}\,+\,\epsilon^2\,\frac{dy_2}{dx}\,+\,\dots\right]\,+\,\left[\epsilon\,y_0\,\frac{dy_0}{dx}\,+\,2\,\epsilon^2\,y_0\,\frac{dy_1}{dx}\,+\,\epsilon^3\,y_1\,\frac{dy_1}{dx}\,+\,\dots\right]\,+\,\left[y_0\,+\,\epsilon\,y_1\,+\,\epsilon^2\,y_2\,+\,\dots\right]\,=\,0
Please tell me if the above substitution and expansion are correct.
Now I start matching terms according to their order.
O(1): \frac{dy_0}{dx}\,=\,-y_0
O(\epsilon): \frac{dy_1}{dx}\,=\,-y_0\,\frac{dy_0}{dx}\,-\,y_1
O(\epsilon^2): \frac{dy_2}{dx}\,=\,-2\,y_0\,\frac{dy_1}{dx}\,-\,y_2
Solving for order one
\int\,\frac{dy_0}{dx}\,=\,\int\,-y_0
y_0\,=\,K_0
OR using the base case that I am unsure about
y_0\,=\,1
But which one is it?
Thanks in advance for your help!
Last edited by a moderator: