Perturbation theory for solving a second-order ODE

Robin04
Messages
259
Reaction score
16
Homework Statement
##\ddot{\xi}(t)=-b\xi (t)+\cos{(\omega t)}(a-c \xi^2(t))##, where ##a, b, c## are constants
Relevant Equations
-
I have to solve the equation above. I haven't heard about an exact method so I tried to apply perturbation theory. I don't know much about it so I would like to ask for some help.
First I put an ##\epsilon## in the coefficient of the non-linear ##\xi^2(t)## term:
##\ddot{\xi}(t)=-b\xi (t)+\cos{(\omega t)}(a-\epsilon c\xi^2(t))##
I calculated to the first order term and it was diverging. I heard that there are some methods that can help to sum a divergent series. Can you suggest any that can work here?
Also, next I tried to put ##\epsilon## in the exponent of the non-linear term, but when I substitute the series into the equation I don't know how to raise the series to the power ##\epsilon##.
So basically ##(\xi_0+\epsilon \xi_1+\epsilon^2 \xi_2+...)^{2 \epsilon}=?##
 
Physics news on Phys.org
How sure are you that the equation reads $$\ddot{\xi} = -b\xi + \cos(\omega t)(a-c\xi^2)$$ and not instead $$\dot{\xi} = -b\xi + \cos(\omega t)(a-c\xi^2).$$ I only ask because the latter is an Ricatti equation and thus exactly solvable.

Robin04 said:
I calculated to the first order term and it was diverging. I heard that there are some methods that can help to sum a divergent series.

If you only have calculated the pertubation series upto first order, then how can the series be divergent if it is finite?
 
William Crawford said:
How sure are you that the equation reads
I'm sure, it is an equation of motion.
William Crawford said:
If you only have calculated the pertubation series upto first order, then how can the series be divergent if it is finite?
I meant it in the sense that this equation comes up as a part of an approximation method to a certain motion, and the unperturbed solution gives a much better approximation than with the first order term included, so I figured I don't have to go to second order.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top