1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Phase-plane dynamics of an atomic force microscope cantilever.

Tags:
  1. Aug 1, 2013 #1
    Hello,

    A sinusoidally driven and undisturbed cantilever of an atomic force microscope (AFM) oscillates ideally in a sinusoidal fashion but the motion of the cantilever (time-domain trajectory) can become more complicated when it is disturbed by the inter-atomic forces as the cantilever taps on the sample surface. The cantilever dynamics can be better understood in the phase-plane. An undisturbed cantilever shows elliptical trajectories in the phase-plane around a center. On the other hand, a disturbed cantilever can show nonlinear effects like period-doubling, bifurcation and chaos.

    I'd like to know what can be said about the phase-plane trajectory in terms of the attractor, basin of attraction or the possibility of chaos as shown in the attachement containing my experimental data? In the beginning the phase-plane trajectories circle around a center and as the signal size increases, these trajectories also grow in size and the center transforms into a set of two centers.

    Thanks.
     
  2. jcsd
  3. Aug 2, 2013 #2

    Andy Resnick

    User Avatar
    Science Advisor
    Education Advisor
    2016 Award

  4. Aug 2, 2013 #3
    Thanks.

    I already know the papers by Raman and Jamitzky but they've done experiments aimed at observing chaos in AFM and I've a different experiment where I'm not forcing the cantilever motion to be chaotic but observing breakdown of the cantilever trajectory in time-domain and the phase-plane trajectory shows a specific attractor which doesn't seem to be a chaotic one but still is markedly different from that of a harmonic oscillator.

    I think time series analysis of the given experimental data can be helpful but my question was how to understand the attractor from a purly dynamical point of view?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Phase-plane dynamics of an atomic force microscope cantilever.
  1. Forces laws by phases (Replies: 0)

Loading...