- #1

- 2

- 0

## Main Question or Discussion Point

Hi all,

we know that the state of material particles (like electron) can be described by a wavefunction and that the wavefunction has a probabilistic interpretation. I have studied at very introductory level the quantum theory of electromagnetic radiation and it seems that it is built up in a way that does not require the notion of photon wavefunction. So the question is that is it meaningful (at least for pedagogical purposes) to consider the photon wavefunction (giving the probability distribution of finding the photon in space)? And how far can we say that the classical field (the solution of Maxwell's equations) represents that wavefunction? Thanks.

we know that the state of material particles (like electron) can be described by a wavefunction and that the wavefunction has a probabilistic interpretation. I have studied at very introductory level the quantum theory of electromagnetic radiation and it seems that it is built up in a way that does not require the notion of photon wavefunction. So the question is that is it meaningful (at least for pedagogical purposes) to consider the photon wavefunction (giving the probability distribution of finding the photon in space)? And how far can we say that the classical field (the solution of Maxwell's equations) represents that wavefunction? Thanks.