Your Question 1: What divergence really means w.r.t. a coordinate system?
My Answer: Divergence of vector results in a scalar. The same being defined at any arbitrary point and the divergence of a vector being a scalar, it remains same for any coordinate frame. A scalar always implies a quantity remaining same for all coordinate frames.
Your statement: Supposed there is a current distribution J at r' w.r.t. some primed coordinate system. And B is defined at position r w.r.t. unprimed coordinate system.
Now if we integrate (Del.B ) over a volume enclosing the whole current distribution w.r.t. the unprimed coordinate system, then it means the total outward flux over the volume.
My comment on your statement: Integration of Del.B (= divergence ofB) over a volume in space means the total outward flux through out the surface enclosing the volume. However, divergence of B (B being magnetic flux density) integrated will be always zero. In analogy to divergence of electric field integrated over a volume (enclosed by a surface over which the associated flux integrated remains equal to the mentioned integral of Del.E) equaling the [net electric charge/ (permittivity of vacuum)], Del.B being always zero is indicative of magnetic mono poles being absent. However, Del.B never give the information on the current generating it, though B separately does.It is curl of B that is proportional to current density. However, it is an area enclosed by a closed curve over which curl B is integrated and this will be equal to the line integral of B evaluated along the closed curve enclosing (bordering) the surface that is associated with integral of curl B integrated over the mentioned surface. Again, the value of the mentioned integral is associated with the net current flowing across the area mentioned, in analogy with the previously discussed volume integral of Del.B remaining associated with any magnetic monopole (which is invariably zero) [Also note that the surface(on which the curl B is integrated), as enclosed by a closed curve can be of any arbitrary shape (in our 3 D space with the only restriction regarding the curve being its border) whereas in our normal 3D space, the volume enclosed by a given closed surface remains fixed by volume as well as shape].
Summary: Linking divergence of B with current elements enclosed is entirely wrong - they are not related.
Your Question 2: WHAT (Del.B ) MEANS (no integration over any volume)??
The meaning of (Del.B) at a given point comes from the fact that (Del.B) multiplied by an elementary volume (small volume enough that Del.B remains uniform) becomes the total flux flowing out of the microscopic surface enclosing it (note that the surface integral of (flux of B) still remains expressed as an integral and cannot be expressed as a simple product of the area of the surface and the flux, however microscopic the area becomes (because, flux means at a point on the surface scalar product of B with the unit normal vector to the surface at the point and the unit normal vector varies in its direction from 0 to 2*pi radians along all the planes containing the vector B, which spans the elementary surface enclosing the elementary volume)).
This means, Del.B defined at a point in space is equal to the ratio of (integral of flux of B taken over the area of a microscopic surface enclosing the point) to the (microscopic volume contained by the microscopic surface); the smallness of the area and the volume being such that both B (mind you, not the flux of B over the elementary surface) and Del.B remains uniform (a mathematician will say limit of the volume tending to zero).
Any proposal to the meaning of div B simpler than this can be a mistake.
Your Question 3: Here "Del" and B is defined from unprimed coordinate system and inside B, J is from primed coordinate and R (in B ) is equal to (r - r').
If it means flux over an infinitesimal unit volume then what is the position of that volume.
My interpretation/comment of your question: You meant to say B as a vector field is expressed as a function of position vectors of various points as defined in the primed coordinate system and so also is the current density J (as a vector). Next, it is not clear what do you mean by 'R(=(r-r')) in B.' It is also not understood what it means by 'infinitesimal unit volume' - there is no such thing in general, especially with the types of permanent magnets/electromagnets used in a lab. However, if B as in the case of Earth's magnetic field showing any appreciable deviation only over a few thousand kms, a unit volume can be Infinitesimally small, provided B does not vary much (both as per direction as well as magnitude, since it is a vecto
r) and within a region of unit volume, bound by surface also not having any of its dimensions too large (be careful, in the case of Earth's magnetic field a cube of 1 cubic meter may be small enough; however, if you think of a cylinder of 10000 km length and radius 0.117 mm as the shape enclosing the volume, B is not constant as a vector all along).
My Answer (if I interpreted the question correctly):Flux flowing out of an infinitesimally small volume (shape of the volume chosen in such a way that none of the dimensions of the shape enclosing the volume is too large too) is independent of its position vector. This means the question on the position vector of the elementary volume considered does not matter to the flux flowing out of the volume. Here, therelative orientationbetween the magnetic field, and unit normal vectors along various points of the surface enclosing the concerned elementary volume are invariant and so also the total flux flowing out of the elementary volume. Therefore, the evaluation of flux over the elementary surface enclosing elementary volume is in an affine vector space (the space in which the vectors are not having their end points fixed). The divergence of B being a scalar (remaining invariant of the coordinate frame chosen) linked to the mentioned flux by Gauss divergence theorem, the same becomes independent of its position vector. It is much the same way as the amount of water flowing out of a tap does not depend on the position vector of the tap as seen by observers keeping their position as the origin.
Note: I am available in face book too.