MHB What is the Magnitude of Force P to Keep a Block Stationary Against a Wall?

  • Thread starter Thread starter Wild ownz al
  • Start date Start date
  • Tags Tags
    Motion Physics
AI Thread Summary
To keep a block of mass 3.00 kg stationary against a wall, a force P at a 50.0-degree angle must be applied, considering the coefficient of static friction is 0.250. The horizontal forces must balance, leading to the equation -N + F*cos(50) = 0, where N is the normal force. In the vertical direction, the friction force acts downward, and its magnitude is f = μN, which must also be accounted for in the equilibrium equations. Analyzing both the horizontal and vertical forces allows for the determination of the possible values for the magnitude of P. Properly accounting for all forces is essential for solving the problem accurately.
Wild ownz al
Messages
30
Reaction score
0
A block of mass 3.00kg is pushed up against a wall by a force of P that makes a 50.0 degree angle with the horizontal (REFER TO PICTURE). The coefficient of static friction between the block and the wall is 0.250. Determine the possible values for the magnitude of P that allow the block to remain stationary.
 

Attachments

  • thumbnail_20181217_204641 (1).jpg
    thumbnail_20181217_204641 (1).jpg
    55.6 KB · Views: 121
Mathematics news on Phys.org
You have an applied force which has a component in the horizontal direction. You also have a normal force directed in the opposite direction. (Let's say that N is in the negative x direction and the component of the applied force is in the +x.) The sum of these two forces must be 0 N as there is no motion in this direction. This gives you N in terms of the applied force. Thus [math]\sum F _x = -N + F~cos(50) = 0[/math].

What can you say about the vertical (y) direction? Do the same thing. A lot of stuff will cancel out.

By the way, you missed a force on your diagram. There is a friction force acting downward of magnitude [math]f = \mu N[/math].)

See what you can do with this.

-Dan
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top