1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Physics of a Verne Gun

  1. Sep 6, 2009 #1
    A scenario recently sketched out by Brian Wang at "Next Big Feature" is to launch a vehicle to escape velocity via using a nuclear pulse, but enclosed so the fall-out can be contained. I suggested it needed a working fluid, specifically hydrogen, to provide a mechanical coupling between vehicle and nuclear detonation. The original "Orion" nuclear pulse design used multiple small explosions over a long acceleration track up through the atmosphere - thus fallout issues. Brian supposed a large nuke might instead allow a very high acceleration of a payload in a short distance. Obviously it wouldn't be a manned vehicle, since the acceleration would be 10,000-100,000 gees. One problem I saw was the issue of energy transfer, since the original "Orion" used small charges that focussed the plasma from the blast, but interacted very briefly with the ultra-hot plasma, else the pusher plate would be in serious trouble.

    So what if a nuke was used to heat a volume of hydrogen gas, which was then allowed to expand and push the payload along a tube, say 2 km long. Basically an updated Verne Moon-Gun. I assumed the vehicle massed 10,000 tons, had a circular base (10 or 20 metres wide), was totally filled by either payload or a light, strong volume filling material. Boosted along a 2 km track, in a vacuum, until the end when a high-speed shutter would open. Final velocity would be roughly 13,500 m/s, allowing for some frictional loss.

    I could only make rough guesses as to what gas temperature would be required and I've no idea how efficiently a nuclear detonation's x-ray and neutron flash would transfer heat to the hydrogen, but I assumed a spherical gas reservoir either 100 to 200 metres across, probably under some positive pressure, buried in a mountain. For diatomic hydrogen initially at 300 K I ended up with a temperature of about 4600 K, in order for the expanding gas to do sufficient work to push the payload to the right speed. However I have no idea just how fast the gas would really expand - supersonic? sonic speeds? And how much would dissociate and ionise? How do you work that out? I know the specific energies for each, but not the actual proportions that would obtain.

    Any pointers, physics heads?
     
  2. jcsd
  3. Sep 7, 2009 #2

    Vanadium 50

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2017 Award

    Well, not after the engines started, that's for sure!
     
  4. Sep 7, 2009 #3
    Well put. Any thoughts on the rest of the details?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Physics of a Verne Gun
  1. Gun question (Replies: 6)

  2. Vaporization gun (Replies: 1)

  3. Spring Gun (Replies: 5)

Loading...