- #1

FlowiwGhar

- 2

- 0

- Homework Statement
- Salmon often jump waterfalls to reach their

breeding grounds.

Starting downstream, 2.73 m away from a

waterfall 0.614 m in height, at what minimum

speed must a salmon jumping at an angle of

26.7◦

leave the water to continue upstream?

The acceleration due to gravity is 9.81 m/s^2.

Answer in units of m/s.

- Relevant Equations
- N/A

m * g * h + (1/2) * m * v² = m * g * y

Simplifying the equation:

g * h + (1/2) * v² = g * y

Substituting the values:

g * 0.614 + (1/2) * v² = g * 2.73 * sin(26.7°)

Now, let's solve for v:

(1/2) * v² = g * 2.73 * sin(26.7°) - g * 0.614

v² = 2 * (g * 2.73 * sin(26.7°) - g * 0.614)

v = √(2 * (g * 2.73 * sin(26.7°) - g * 0.614))

Substituting the value of g = 9.81 m/s² and performing the calculations:

v ≈ √(2 * (9.81 * 2.73 * sin(26.7°) - 9.81 * 0.614))

v ≈ √(2 * (53.803 - 6.018))

v ≈ √(2 * 47.785)

v ≈ √95.57

v ≈ 9.78 m/s

Simplifying the equation:

g * h + (1/2) * v² = g * y

Substituting the values:

g * 0.614 + (1/2) * v² = g * 2.73 * sin(26.7°)

Now, let's solve for v:

(1/2) * v² = g * 2.73 * sin(26.7°) - g * 0.614

v² = 2 * (g * 2.73 * sin(26.7°) - g * 0.614)

v = √(2 * (g * 2.73 * sin(26.7°) - g * 0.614))

Substituting the value of g = 9.81 m/s² and performing the calculations:

v ≈ √(2 * (9.81 * 2.73 * sin(26.7°) - 9.81 * 0.614))

v ≈ √(2 * (53.803 - 6.018))

v ≈ √(2 * 47.785)

v ≈ √95.57

v ≈ 9.78 m/s