Planar angle between two vectors

  • Thread starter Thread starter Philosophaie
  • Start date Start date
  • Tags Tags
    Angle Vectors
Philosophaie
Messages
456
Reaction score
0
I have two vectors:
f1 = (x1,y1,z1)
f2 = (x2,y2,z2)
The origins are placed together and they are of the same coordinate system.
They make a plane between the two vectors and the origin.
How do you find the angle between the two vector on that plane?
 
Physics news on Phys.org
\vec f_1\cdot \vec f_2 = \Vert \vec f_1\Vert \cdot \Vert \vec f_2\Vert \cdot \cos(\alpha)
(i.e., compute the scalar product, divide it by the vector norms, and you get the cosinus of the angle you are searching.)
 
  • Like
Likes Philosophaie
It so happens I just wrote these notes:

For vector spaces over R, the dot product let's us measure lengths and angles. I.e. if we think of the axes spanned by the standard basis vectors as mutually perpendicular, or “orthogonal”, then by Pythagoras the square of the length |v| of a vector v = (a1,...,an) is just |v|^2 = a1^2+...+an^2 = v.v. Moreover if v = (a1,...,an), and w = (b1,...,bn) are any two vectors, then |v|,|w|, and |v-w| are the length of the sides of the triangle they determine, and hence by the law of cosines |v-w|^2 = |v|^2 + |w|^2 - 2|v||w|.cos(C), where C is the angle between v and w. Expanding the left side as |v-w|^2 = (v-w).(v-w) = v.v - 2v.w + w.w, we get v.w = |v||w|.cos(C). Since cos(π/2) = 0, this implies that v.w = 0 if (and only if) v and w are perpendicular. This is quite useful.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top