Planet gear efficiency. Need help

AI Thread Summary
The discussion centers on calculating the theoretical efficiency of a complex compound epicyclic gear train designed for slow-speed operation under light load. The gear configuration includes a sun gear, two planet gears, and two ring gears, resulting in a total reduction ratio of 720:1. The user expresses concerns about potential inefficiency due to the high reduction ratio and seeks guidance on calculating energy loss and required torque. Various methods for assessing epicyclic train efficiency are mentioned, but the complexity of the design poses challenges for the user. The conversation suggests considering practical testing or examining similar designs for a rough efficiency estimate.
anticz
Messages
1
Reaction score
0
I'm having a bit of difficulty figuring out the theoretical efficiency of a compound epicyclic gear train. The math involved is a bit over my head. This train is meant to run at very slow speed under light load. I want to find the theoretical efficiency of the design so I can determine if it is feasible to build. Here are the details.

(A) sun gear = 17 teeth
(B) Planet gear = 51 teeth
(C) Ring gear = 119 teeth
(D) Planet gear = 52 teeth
(E) Ring gear = 120 teeth
.25 module (metric)
input torque = 5 to 10 [N*mm]

Input is Ring (E) rotating counter-clockwise once every 6 hours
Output is Sun (A) rotating clockwise once every 30 seconds
720:1 total reduction

Ring (E) meshes with Planet (D) which is compounded to planet (B). Planet (B) meshes with ring (C) [locked] giving a -90:1 reduction on the arm (Arm spins clockwise). Compound planets spin 2.333333:1 relative to carrier. Planet (B) meshes with Sun (A) giving an 8:1 ratio for a total ratio of 720:1.

I'm guessing this is going to be very inefficient do to the high reduction but, I have no Idea how to find out how much energy is being lost or how to figure out how much torque is actually needed to run this. I've found several methods for calculating efficiency of an epicyclic train but I'm completely lost on this because it's a bit more complex than a simple planet set. I'd describe myself as more of an amateur inventor than a mechanical engineer. Any help would be greatly appreciated.

Thanks in advance

Mike B.
 
Engineering news on Phys.org
Build it and test?

Or look at similar designs if you just want a ballpark estimate.
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top