Finding the Limit of g(x) and r(x) as x Approaches a Specific Value

  • Thread starter Thread starter jessyca_lynne
  • Start date Start date
  • Tags Tags
    Limits
jessyca_lynne
Messages
2
Reaction score
0
let g(x)= (x-3)sin(1/(x-3))+2. Determin ethe limit by any means possible as x-->3.


let r(x)=2+((sinx)/x)
find the limit of r(x) as x aproaches infinity

make a conjecture about the limit of r(x) as x approaches zero. give evidence to support your conjecture.
 
Physics news on Phys.org
What have you done so far?
 
i don't know where to begin!
 
jessyca_lynne said:
let g(x)= (x-3)sin(1/(x-3))+2. Determin ethe limit by any means possible as x-->3.


let r(x)=2+((sinx)/x)
find the limit of r(x) as x aproaches infinity

make a conjecture about the limit of r(x) as x approaches zero. give evidence to support your conjecture.

I suggest you use lim_{x\rightarrow a}(F(x)\cdot G(x))=lim_{x\rightarrow a} F(x) \cdot lim_{x\rightarrow a}G(x).
 
Well, do you know the definition of what it means to say

\lim_{x \rightarrow a} f(x) = L,

or

\lim_{x \rightarrow \infty} f(x) = L

?
 
Last edited:
radou said:
I suggest you use lim_{x\rightarrow a}(F(x)\cdot G(x))=lim_{x\rightarrow a} F(x) \cdot lim_{x\rightarrow a}G(x).

This only works if both limits exist!
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top