Population Model Homework: Determine Equilibrium Solutions

  • Thread starter Thread starter tylersmith7690
  • Start date Start date
  • Tags Tags
    Model population
tylersmith7690
Messages
21
Reaction score
0

Homework Statement



The simplest useful model for fisher comes from the logistic model for population growth, together with a harvest h which is proportional to the current population P, that is,

h=EP,

where the constant E is called the effort. E measures the fraction of the population harvested, so that 0 <= E <= 1. This gives the model

dP/dt = kP(1-(P/a) - EP,

where P(t) is the number of these fish at time t year and k (the natural growth rate) and a( the carrying capacity) are constants for a particular fish polulation. In what follows take k= 1 and a= 4, for simplicity.

a) determine the equilibrium solutions for a given effort E.

my attempt.

dP/dt = P - P^2/4 - EP

dP/dt = ( P + E) (P -1/4)

equilibrium solutions are when dP/dt=0

so P(0)= -E, 1/4.
 
Last edited:
Physics news on Phys.org
tylersmith7690 said:

Homework Statement



The simplest useful model for fisher comes from the logistic model for population growth, together with a harvest h which is proportional to the current population P, that is,

h=EP,

where the constant E is called the effort. E measures the fraction of the population harvested, so that 0 <= E <= 1. This gives the model

dP/dt = kP(1-(P/a) - EP,

You miss a parentheses: dP/dt = kP(1-(P/a)) - EP

tylersmith7690 said:
where P(t) is the number of these fish at time t year and k (the natural growth rate) and a( the carrying capacity) are constants for a particular fish polulation. In what follows take k= 1 and a= 4, for simplicity.

a) determine the equilibrium solutions for a given effort E.

my attempt.

dP/dt = P - P^2/4 - EP

dP/dt = ( P + E) (P -1/4)

The last equation is wrong.

tylersmith7690 said:
equilibrium solutions are when dP/dt=0

so P(0)= -E, 1/4.

Because of the faulty factorisation, the result is not correct (and physically impossible).

ehild
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top