camino
- 42
- 0
Homework Statement
Find all solutions (x,y) for which fx(x,y) = 0 = fy(x,y) if f(x,y) = 12xy - x^2 y - 2xy^2
Homework Equations
The Attempt at a Solution
f(x,y)=12xy-x^2y-2xy^2
fx(x,y)=12y-2xy-2y^2
fy(x,y)=12x-x^2-4xy
0=12y-2xy-2y^2
0=12x-x^2-4xy
EQ 1: 2xy=12y-2y^2
2x=12-2y
x=6-y
EQ 2: 0=12(6-y)-(6-y)^2-4(6-y)y
0=72-12y-(y^2-12y+36)-24y+4y^2
0=3y^2-24y+36
0=3(y^2-8y+12)
0=3(y-6)(y-2)
y=6 y=2
x=0 x=4 so (0,6) , (4,2)
I found those 2 solutions so far, is there any more that I might have missed?