drawar
- 130
- 0
Homework Statement
Consider the LP:
max \, -3x_1-x_2
\,\,s.t. \,\,\,\, 2x_1+x_2 \leq 3
\quad \quad \ -x_1+x_2 \geq 1
\quad \quad \quad \quad \ x_1,x_2 \geq 0Suppose I have solved the above problem for the optimal solution. (I used dual simplex and get (0,1) as the optimal solution.)
Now if the first constraint (2x_1+x_2 \leq 3) is either changed to
(1) max \, (2x_1+x_2,0) \leq 3, or
(2) max \, (2x_1+x_2,6)\leq 3,
is it possible to obtain the new optimal solution without having to solve the entire problem from the scratch?
Homework Equations
The Attempt at a Solution
I have tried introducing a new variable t to address the maximum and rewrite the constraints in linear form but it doesn't seem to help.Any hint or comment is greatly appreciated, thank you!