Potential MIT virus breakthrough?

AI Thread Summary
MIT Lincoln Laboratory researchers have developed a technique using DRACOs (Double-stranded RNA Activated Caspase Oligomerizers) to target and eliminate a wide range of viruses by inducing apoptosis in infected cells. This method exploits the presence of long double-stranded RNA, which is typically indicative of viral infection, to trigger cell death before the virus can replicate. While initial studies show promise against 15 different viruses in cultured cells, concerns remain regarding the effectiveness of DRACOs in live patients and their susceptibility to degradation in the body. Additionally, not all viruses produce the long dsRNA required for DRACOs to function, potentially limiting their application against certain pathogens like HIV. Further research is necessary to assess the full potential and limitations of this antiviral strategy.
imiyakawa
Messages
262
Reaction score
1
MIT Lincoln Laboratory researchers develop a technique to cure a broad range of viruses
Viral pathogens pose serious health threats worldwide. For clinical viruses such as HIV or hepatitis, emerging viruses such as avian or swine influenza, and highly lethal viruses such as Ebola or smallpox that might be used in bioterrorist attacks, relatively few therapeutics or prophylactics (preventatives) exist. Most therapeutics that do exist are highly specific for one virus, are ineffective against virus strains that become resistant to them, or have adverse effects on patients.

lEDzn.jpg

http://www.ll.mit.edu/news/DRACO.html

Edit: Thanks to Ygggdrasil:
Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, et al. (2011) Broad-Spectrum Antiviral Therapeutics. PLoS ONE 6(7): e22572. doi:10.1371/journal.pone.0022572
 
Last edited:
Biology news on Phys.org
Here's a link to the (freely available) scientific paper describing the antiviral strategy:

Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, et al. (2011) Broad-Spectrum Antiviral Therapeutics. PLoS ONE 6(7): e22572. doi:10.1371/journal.pone.0022572

My analysis of the paper:

Many viruses, during their replication phase, create fairly long double-stranded RNA (dsRNA) molecules. For example, the influenza virus copies its genome through a dsRNA intermediate. In contrast, mammalian cells usually do not produce many long (>~23nt) dsRNA molecules. Therefore, the presence of long dsRNAs inside the cell are a good indicator of viral infection. Indeed, many cellular antiviral defenses are based on the recognition of dsRNA.

In the paper, the authors create a class of protein-based agent (called DRACOs) that senses double-stranded RNA (dsRNA), and when the protein senses dsRNA, it tells the cell to undergo apoptosis, programmed cell death, in order to kill the cell before the virus can copy itself. These DRACOs are able to enter cells in culture and protect the culture from infection by a variety of viruses (the study tested 15 viruses from a variety of virus families). The DRACOs also do not seem to be harmful to uninfected cells (the study tested 11 lines of cultured mammalian cell).

These DRACO agents do seem like they could show some promise, although more research need to be done to determine how effective they will work in patients (versus just in cultured cells). Because the DRACO agents are proteins, they are very susceptible to degradation by the body. I have doubts that systemic application of these proteins into a patient would deliver enough of them to the infected tissue to help control the infection.

Because the DRACOs are engineered from components of the cell already used to combat viral infections (dsRNA sensing proteins and proteins that induce apoptosis), there is some concern that some of the mechanisms that viruses have evolved to evade the cellular antiviral defenses may also be effective against the DRACOs. For example, some viruses have evolved ways to prevent apoptosis (cytotoxic T-cells help fight infection by telling infected cells to undergo apoptosis). However, these DRACOs activate the apoptotic pathway fairly directly and may be able to get around some of the tricks viruses use to inhibit apoptosis. A larger concern are the tricks that viruses have evolved to mask their dsRNA from detection in the cell.

Finally, although the authors show efficacy against a broad spectrum of viruses, not all viruses produce long dsRNAs that can be recognized by the DRACOs. Retroviruses like HIV do not contain long stretches of dsRNA that would activate the DRACOs, so the DRACOs would likely be ineffective against this class of virus.
 
Ygggdrasil said:
Finally, although the authors show efficacy against a broad spectrum of viruses, not all viruses produce long dsRNAs that can be recognized by the DRACOs. Retroviruses like HIV do not contain long stretches of dsRNA that would activate the DRACOs, so the DRACOs would likely be ineffective against this class of virus.

I don't usually reply to posts but had to correct the invalid conclusion above. DRACOS do not specifically have to use long dsRNA to recognize pathogens. The article quoted did indeed emphasize the use of dsRNA, however the overarching principal of DRACOs is the presence of an unnaturally occurring combination of a pathogen detection domain and an effector domain that performs a prescribed function, one such function being initiation of cellular apoptosis. In other words dsRNA binding is one instance of a detection domain, and cellular apoptosis is one instance of an effector domain action. It would take a couple of pages to list all the possible detection and effector domains so I'll just references the patents indicated in the PLoS ONE article, in particular US 7566694 B2. In reading the patent, you'll also notice that among the spectrum of susceptible pathogens are the retroviruses such as HIV and human T Cell leukemia virus.
 
I haven't read the paper, but I am aware that mammalian cells can already detect and react to dsRNA. TLR-3, a class of Toll-like receptor responds specifically to dsRNA. The effector arm involves the induction of interferon production.
 
thomasdalton said:
I don't usually reply to posts but had to correct the invalid conclusion above. DRACOS do not specifically have to use long dsRNA to recognize pathogens. The article quoted did indeed emphasize the use of dsRNA, however the overarching principal of DRACOs is the presence of an unnaturally occurring combination of a pathogen detection domain and an effector domain that performs a prescribed function, one such function being initiation of cellular apoptosis. In other words dsRNA binding is one instance of a detection domain, and cellular apoptosis is one instance of an effector domain action. It would take a couple of pages to list all the possible detection and effector domains so I'll just references the patents indicated in the PLoS ONE article, in particular US 7566694 B2. In reading the patent, you'll also notice that among the spectrum of susceptible pathogens are the retroviruses such as HIV and human T Cell leukemia virus.

Considering the authors define DRACOs as Double-stranded RNA (dsRNA) Activated Caspase Oligomerizers, the name implies using dsRNA binding as the detection domain and cellular apooptosis as the effector domain action. I agree that the concept could be broadened to potentially combat other types of pathogens, but these applications to the best of my knowledge have not yet been demonstrated.
 
Deadly cattle screwworm parasite found in US patient. What to know. https://www.usatoday.com/story/news/health/2025/08/25/new-world-screwworm-human-case/85813010007/ Exclusive: U.S. confirms nation's first travel-associated human screwworm case connected to Central American outbreak https://www.reuters.com/business/environment/us-confirms-nations-first-travel-associated-human-screwworm-case-connected-2025-08-25/...
Chagas disease, long considered only a threat abroad, is established in California and the Southern U.S. According to articles in the Los Angeles Times, "Chagas disease, long considered only a threat abroad, is established in California and the Southern U.S.", and "Kissing bugs bring deadly disease to California". LA Times requires a subscription. Related article -...
I am reading Nicholas Wade's book A Troublesome Inheritance. Please let's not make this thread a critique about the merits or demerits of the book. This thread is my attempt to understanding the evidence that Natural Selection in the human genome was recent and regional. On Page 103 of A Troublesome Inheritance, Wade writes the following: "The regional nature of selection was first made evident in a genomewide scan undertaken by Jonathan Pritchard, a population geneticist at the...
Back
Top