Power from a Fourier transform

AI Thread Summary
The discussion centers on the behavior of the Fast Fourier Transform (FFT) when analyzing sinusoidal signals at different frequencies. It notes that while the maximum amplitude of the FFT output decreases with increasing frequency, this is attributed to energy distribution across peaks and fewer samples at higher frequencies. The relationship between energy and frequency resolution in the FFT is questioned, particularly regarding how peak amplitude varies with frequency. Participants discuss normalization methods for FFT results, highlighting that MATLAB's output can differ from expected norms. The conversation concludes with a suggestion to refine the frequency grid for better resolution in FFT analysis.
neil.thompson
Messages
9
Reaction score
0
So I have been away from education for a little while now and I'm going through some refresher stuff - in particular I have been playing around with FFTs.

If i take (with MATLAB notation):

time = 0:0.01:10
y = fft(sin(2*pi*f*time))

with f = 5
then the maximum amplitude of the fft output is about 498.

with f = 10
the maximum amplitude of fft output is 492.

I understand the amplitude is 'halved' in both cases because this fft is ambiguous so the energy is spread over two peaks. But why is the energy less when the frequency increases? I have more cycles in the case with more frequency, but I suppose this means I have less samples. Also, is it usual to normalise this in some way? It seems like this is something you wouldn't want if you were dealing were plotting energy return from doppler shifts.
 
Mathematics news on Phys.org
neil.thompson said:
But why is the energy less when the frequency increases?
How is the energy related to the FT? Have you checked the width of the peaks?

neil.thompson said:
Also, is it usual to normalise this in some way? It seems like this is something you wouldn't want if you were dealing were plotting energy return from doppler shifts.
There are different ways of normalizing the FFT, but it is customary that doing FFT-1(FFT(f)) will return N × f, although MATLAB returns the original result.
 
DrClaude said:
How is the energy related to the FT? Have you checked the width of the peaks?
.

Good point - my language was imprecise. What I meant was peak power, or peak amplitude -- I guess what I'm asking is: if I have a frequency resolution on the FFT such that all of the signal should be confined to a signal frequency bin (e.g., each bin spans is 2kHz, my input signal is a single tone at 4.5kHz so all of the signal should fold into the third bin) so why does the height of the amplitude peak depend on the frequency of the signal?

edit: and into the bargain, related to your point, if I have enough data to get a very fine resolution FT then I guess this will reveal that there will be some spread across bins so the peak isn't the same because the curve is wider/narrower.


DrClaude said:
There are different ways of normalizing the FFT, but it is customary that doing FFT-1(FFT(f)) will return N × f, although MATLAB returns the original result.

Right, thanks.
 
Have you tried to take a finer grid an see what you get then?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top