Precise definition of linear combination

redjoker
Messages
5
Reaction score
0
i know that a linear combination of the vectors {v1,v2,...,vn} is any sum with terms that are scalar multiples of those vectors. But is a1v1 + a2v2 the same linear combination as a2v2 + a1v1? i know they evaluate to the same thing because vector addition is commutative but if i wanted to be precise would i say that it's the same linear combination or a different one only with the same set of coefficients? because if at least one of b1 and b2 was different from a1 and a2, then b1v1 + b2v2 is not considered to be the same linear combination even though they might be equal.
 
Physics news on Phys.org
Hi redjoker! :smile:
redjoker said:
i know that a linear combination of the vectors {v1,v2,...,vn} is any sum with terms that are scalar multiples of those vectors. But is a1v1 + a2v2 the same linear combination as a2v2 + a1v1?

Yes!

And stop worrying :wink: … there really isn't a problem! :biggrin:
 
The point is that linear combination refers to a relation between a vector, say x and a set of vectors say {xi}
A good definition is of Paul Halmos (in Finite-dimensional vector spaces):
We shall say, whenever x = Σiαixi, that x is a linear combination of {xi}

In other words, the phrase "x is the linear combination of..." is the synonym of "x is linearly dependent on...".
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top