Preparing 0.3M Phosphate Buffer at pH 7.9: c), d), e), f)

  • Thread starter Thread starter MusicMonkey
  • Start date Start date
  • Tags Tags
    Buffers
AI Thread Summary
To prepare a 150 ml phosphate buffer at pH 7.9, the correct ratio of acid (NaH2PO4) to conjugate base (Na2HPO4) is crucial. The Henderson-Hasselbalch equation indicates that a higher concentration of the conjugate base is needed for a pH above the pKa of 7.2. Calculations show that 25 ml of 0.3M NaH2PO4 and 125 ml of 0.3M Na2HPO4 yield the desired buffer concentration. The other proposed combinations do not meet the 0.3M requirement or the pH target. Therefore, option c) is validated as the correct answer.
MusicMonkey
Messages
48
Reaction score
0
According to theory, which amounts of the following acid and its conjugate base would you need to prepare 150 ml of a 0.3 M phosphate buffer at pH 7.9? Use the pKa table below to help you in your answer.

H3PO4 <–> H2PO4- + H+ pKa = 2.3


H2PO4- <–> HPO4-2 + H+ pKa = 7.2


HPO4-2 <–> PO4-3 + H+ pKa = 12.1


Molecular weights: PO4-3 = 95, Na = 23, H = 1


a) 7.5 ml of 0.3M NaH2PO4 and 37.5 ml of 0.3M Na2HPO4 plus water

b) 37.5 ml of 0.3M NaH2PO4 and 7.5 ml of 0.3M Na2HPO4 plus water

answer:--> c) 25 ml of 0.3M NaH2PO4 and 125 ml of 0.3M Na2HPO4

d) 125 ml of 0.3M NaH2PO4 and 25 ml of 0.3M Na2HPO4

e) 0.05 ml of 0.3M NaH2PO4 and 0.25 ml of 0.3M Na2HPO4 plus water

f) 0.25 ml of 0.3M NaH2PO4 and 0.05 ml of 0.3M Na2HPO4 plus water

I don't understand why c) would be the correct answer. Please help! :bugeye:
 
Physics news on Phys.org
Can you should show some of your reasoning people might tell you what is wrong and point you toward the right direction
 
Well, I am not sure how to get c as the answer because that is the answer that was given. This question appeared on a test.
I thought the answer should be b because after using the equation pH=pKa+log(A/HA) I got the results of 37.5 and 7.5, but then in theory water is not added to the solution to create a buffer unless I believe a titration is made. I may be mixing this information up with something else. In theory no titration is made and the Henderson-Hasselbach equation is used. That is why I do not understand how the values for C are correct. Thank you.
 
Hellp
I don't understand why c) would be the correct answer.
can you give me the lows please


MusicMonkey said:
According to theory, which amounts of the following acid and its conjugate base would you need to prepare 150 ml of a 0.3 M phosphate buffer at pH 7.9? Use the pKa table below to help you in your answer.

H3PO4 <–> H2PO4- + H+ pKa = 2.3


H2PO4- <–> HPO4-2 + H+ pKa = 7.2


HPO4-2 <–> PO4-3 + H+ pKa = 12.1


Molecular weights: PO4-3 = 95, Na = 23, H = 1


a) 7.5 ml of 0.3M NaH2PO4 and 37.5 ml of 0.3M Na2HPO4 plus water

b) 37.5 ml of 0.3M NaH2PO4 and 7.5 ml of 0.3M Na2HPO4 plus water

answer:--> c) 25 ml of 0.3M NaH2PO4 and 125 ml of 0.3M Na2HPO4

d) 125 ml of 0.3M NaH2PO4 and 25 ml of 0.3M Na2HPO4

e) 0.05 ml of 0.3M NaH2PO4 and 0.25 ml of 0.3M Na2HPO4 plus water

f) 0.25 ml of 0.3M NaH2PO4 and 0.05 ml of 0.3M Na2HPO4 plus water

I don't understand why c) would be the correct answer. Please help! :bugeye:
 
This question looks hard, but in fact is pretty obvious.

First of all - out of 6 answers listed, 4 are wrong, because they don't give 0.3M buffer solution. That leaves only two answers to select from. pKa2 is 7.2 - so to have buffer with pH lower than that you need a solution which contains more acid than base. That leaves only one answer.

Sure, that requires assumption that one of the answers given is correct :smile:


Buffer Maker - the ultimate buffer calculator
 
V=150 ml= 0.15 L
C=0.3 M
pH= 7.9
pKa= 7.2
MW Na2HPO4=(23 x 2) + 1+ 95 = 142
MW NaH2PO4= 23 + (1 x 2) + 95= 120
……..
H2PO4- <–> HPO4-2 + H+
pH = pKa +log conjugated base/ acid
7.9=7.2 + log Na2HPO4/ NaH2PO4
0.7= log Na2HPO4/ NaH2PO4
1) Na2HPO4/ NaH2PO4 = 5.011
2) Na2HPO4 + NaH2PO4= 0.3 M
From 1 & 2 : Na2HPO4= 0.245 NaH2PO4= 0.049

G (wight) [gr]= C(concentration) [M] x mw (molecular weight) X v (volume) [L]
Na2HPO4 G= 0.245 x 0.15 x 142= 5.218 gr in 0.15 L water
NaH2PO4 G= 0.049 x 0.15 x 120= 0.882 gr in 0.15 L water
Or
V= g/C x MW
Na2HPO4 V= 5.218/ 0.3 x 142 = 0.122 L = 122 ml of 0.3M Na2HPO4
NaH2PO4 V = 0.882 / 0.3 x 120= 0.0245 = 24.5 ml of 0.3M NaH2PO4

These answers are close enought to C)
 
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top